Matching Items (32)
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151294-Thumbnail Image.png
Description
The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse

The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse due to relatively high cost and practical difficulties in logistics and deployment. As a result, data is temporally and spatially limited and is inadequate to be used for researches at large scales, such as regional and global climate modeling. Besides field measurements, an alternative way is to estimate turbulent fluxes based on the intrinsic relations between surface energy budget components, largely through thermodynamic equilibrium. These relations, referred as relative efficiency, have been included in several models to estimate the magnitude of turbulent fluxes in surface energy budgets such as latent heat and sensible heat. In this study, three theoretical models based on the lumped heat transfer model, the linear stability analysis and the maximum entropy principle respectively, were investigated. Model predictions of relative efficiencies were compared with turbulent flux data over different land covers, viz. lake, grassland and suburban surfaces. Similar results were observed over lake and suburban surface but significant deviation is found over vegetation surface. The relative efficiency of outgoing longwave radiation is found to be orders of magnitude deviated from theoretic predictions. Meanwhile, results show that energy partitioning process is influenced by the surface water availability to a great extent. The study provides insight into what property is determining energy partitioning process over different land covers and gives suggestion for future models.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Huang, Huei-Ping (Committee member) / Vivoni, Enrique (Committee member) / Mays, Larry (Committee member) / Arizona State University (Publisher)
Created2012
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
151212-Thumbnail Image.png
Description
This study performs numerical modeling for the climate of semi-arid regions by running a high-resolution atmospheric model constrained by large-scale climatic boundary conditions, a practice commonly called climate downscaling. These investigations focus especially on precipitation and temperature, quantities that are critical to life in semi-arid regions. Using the Weather Research

This study performs numerical modeling for the climate of semi-arid regions by running a high-resolution atmospheric model constrained by large-scale climatic boundary conditions, a practice commonly called climate downscaling. These investigations focus especially on precipitation and temperature, quantities that are critical to life in semi-arid regions. Using the Weather Research and Forecast (WRF) model, a non-hydrostatic geophysical fluid dynamical model with a full suite of physical parameterization, a series of numerical sensitivity experiments are conducted to test how the intensity and spatial/temporal distribution of precipitation change with grid resolution, time step size, the resolution of lower boundary topography and surface characteristics. Two regions, Arizona in U.S. and Aral Sea region in Central Asia, are chosen as the test-beds for the numerical experiments: The former for its complex terrain and the latter for the dramatic man-made changes in its lower boundary conditions (the shrinkage of Aral Sea). Sensitivity tests show that the parameterization schemes for rainfall are not resolution-independent, thus a refinement of resolution is no guarantee of a better result. But, simulations (at all resolutions) do capture the inter-annual variability of rainfall over Arizona. Nevertheless, temperature is simulated more accurately with refinement in resolution. Results show that both seasonal mean rainfall and frequency of extreme rainfall events increase with resolution. For Aral Sea, sensitivity tests indicate that while the shrinkage of Aral Sea has a dramatic impact on the precipitation over the confine of (former) Aral Sea itself, its effect on the precipitation over greater Central Asia is not necessarily greater than the inter-annual variability induced by the lateral boundary conditions in the model and large scale warming in the region. The numerical simulations in the study are cross validated with observations to address the realism of the regional climate model. The findings of this sensitivity study are useful for water resource management in semi-arid regions. Such high spatio-temporal resolution gridded-data can be used as an input for hydrological models for regions such as Arizona with complex terrain and sparse observations. Results from simulations of Aral Sea region are expected to contribute to ecosystems management for Central Asia.
ContributorsSharma, Ashish (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Herrmann, Marcus (Committee member) / Phelan, Patrick E. (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2012
135710-Thumbnail Image.png
Description
The storm events of summer 2014 proved to be some of the highest on record for Maricopa County. Flash flooding has been an ongoing issue within Arizona during the monsoon season due to the remnants of hurricanes that result in short, high intensity storms. The proximity of these intense storm

The storm events of summer 2014 proved to be some of the highest on record for Maricopa County. Flash flooding has been an ongoing issue within Arizona during the monsoon season due to the remnants of hurricanes that result in short, high intensity storms. The proximity of these intense storm events and their corresponding flooding structures is imperative in reducing the impact of these events on the community. The analysis of the maximum precipitation events for Tempe, Scottsdale, Phoenix, Mesa, Chandler, Goodyear, Peoria, Avondale and Glendale during the summer of 2014 proved that there were many events that had a calculated recurrence of 100 years or greater. The storm event with the most precipitation events with a recurrence of 100 years or greater was September 8, 2014. This storm event also produced a streamflow response that had the highest recorded streamflow at gages near the events with a 100 year recurrence. These intervals represent a larger amount of rain during a precipitation event and this correlation suggests that short burst of extreme weather was not a trend in this data. Rather, high storm events occurred over the span of 24 hours. The most frequent response of the stream gage to this rain event was a streamflow event that has a recurrence of 2-5 years. This suggests that the channels and flooding structures used to contain the rain events were effective in reducing the amount of water and therefore effectively managing the flooding response. An analysis of newspaper commentary and an interview with a representative from the Flood Control District of Maricopa County (FCDMC) indicated that there is a disconnect between public perception and the structure of FCDMC. Through this analysis a better understanding of the FCDMC as well as the impact of severe storm events in Maricopa County was found.
ContributorsBrancati, Olivia Anne (Author) / Vivoni, Enrique (Thesis director) / White, Dave (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137072-Thumbnail Image.png
Description
Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is injected into the subsurface for disposal. This brine causes a

Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is injected into the subsurface for disposal. This brine causes a pore pressure gradient that is commonly believed to trigger failure along critically stressed subsurface faults. In Timpson, a small city in eastern Texas, earthquakes have become much more common since two injection wells were installed in 2007. 16 events of M_W > 2 have been detected since 2008 and are believed to be associated with failure along a subsurface fault. Applying interferometric synthetic aperture radar, we analyzed 3 sets of SAR images from the Advanced Land Observing Satellite (ALOS) from May 2007 to December 2010. Using these data sets, XX interferograms were generated. From these interferograms, it was possible to determine the spatial and temporal evolution of the crustal deformation in the line-of-sight of the satellite. The results show strong evidence of uplift in the region adjacent to the injection wells. While previous studies have established a strong connection between fluid injection and increased seismicity, this is to our knowledge the first observed case of crustal deformation that has been observed as a result of hydraulic fracturing fluid disposal.
Created2014-05
161609-Thumbnail Image.png
Description
In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored

In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored in lagoons, pits, or barns prior to field application or transport to other farms. Water quality near CAFOs can be impaired through the overflow of lagoons, storm runoff, or lagoon seepage. Assessing water quality impacts of CAFOs in a modeling framework has been difficult because of data paucity. A CAFO lagoon module was developed to assess lagoon overflow risk, groundwater quality, and ammonia emissions of a dairy lagoon. A groundwater quality assessment of a Dairy Lagoon in Lynden Washington was used to calibrate and validate the groundwater quality model. Groundwater down stream of the lagoon was negatively impaired. The long-term effects of this lagoon on water quality were explored as well as the effectiveness of improving the lagoon lining to reduce seepage. This model can be used to improve understanding of the impacts of CAFO lagoon seepage and develop sustainable management practices at the watershed scale for these key components of the agricultural landscape.
ContributorsRudko, Noah (Author) / Muenich, Rebecca (Thesis advisor) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
171584-Thumbnail Image.png
Description
Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if

Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm the impacts of future warming and how this might vary in space. Climate change will also intensify forest disturbances (wildfire, mortality, thinning), which can significantly impact water resources. These impacts are not constrained, given findings of mixed post-disturbance hydrologic responses. Process-based models like the Variable Infiltration Capacity (VIC) platform can quantitatively predict hydrologic behaviors of these complex systems. However, barriers limit their effectiveness to inform decision making: (1) simulations generate enormous data volumes, (2) outputs are inaccessible to managers, and (3) modeling is not transparent. I designed a stakeholder engagement and VIC modeling process to overcome these challenges, and developed a web-based tool, VIC-Explorer, to “open the black box” of my efforts. Meteorological data was from downscaled historical (1950-2005) and future projections (2006-2099) of eight climate models that best represent climatology under low- and high- emissions. I used two modeling methods: (1) a “top-down” approach to assess an “envelope of hydrologic possibility” under the 16 climate futures; and (2) a “bottom-up” evaluation of hydrology in two climates from the ensemble representing “Hot/Dry” and “Warm/Wet” futures. For the latter assessment, I modified land cover using projections of a LULC model and applied more drastic forest disturbances. I consulted water managers to expand the legitimacy of the research. Results showed Far-Future (2066-2095) basin-wide mean annual streamflow decline (relative to 1976-2005; ensemble median trends of -5% to -25%), attributed to warming that diminished spring snowfall and melt and year-round increased soil evaporation from the Upper Basin, and overall precipitation declines in the Lower Basin. Forest disturbances partially offset warming effects (basin-wide mean annual streamflow up to 12% larger than without disturbance). Results are available via VIC-Explorer, which includes documentation and guided analyses to ensure findings are interpreted appropriately for decision-making.
ContributorsWhitney, Kristen Marie (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Whipple, Kelin X (Committee member) / White, Dave D (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2022
189364-Thumbnail Image.png
Description
Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to

Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to increase our comprehension of how dryland plants might respond and adapt to environmental changes. I conducted a meta-analysis on the flowering phenology of dryland plants and showed that some species responded to climate change through accelerated flowering, while others delayed their flowering dates. Dryland plants advanced their mean flowering dates by 2.12 days decade-1, 2.83 days °C-1 and 2.91 days mm-1, respectively, responding to time series, temperature, and precipitation. Flowering phenology responses varied across taxonomic and functional groups, with the grass family Poaceae (-3.91 days decade1) and bulb forming Amaryllidaceae (-0.82 days decade1) showing the highest and lowest time series responses respectively, while Brassicaceae was not responsive. Analysis from herbarium specimens collected across Namibian drylands, spanning 26 species and six families, revealed that plants in hyper-arid to arid regions have lower phenological sensitivity to temperature (-9 days °C-1) and greater phenological responsiveness to precipitation (-0.56 days mm-1) than those in arid to semi-arid regions (-17 days °C-1, -0.35 days mm-1). The flowering phenology of serotinous plants showed greater sensitivity to both temperature and precipitation than that of non-serotinous plants. I used rainout shelters to reduce rainfall in a field experiment and showed that drought treatment advanced the vegetative and reproductive phenology of Cleome gynandra, a highly nutritional and medicinal semi-wild vegetable species. The peak leaf length date, peak number of leaves date, and peak flowering date of Cleome gynandra advanced by six, 10 and seven days, respectively. Lastly, I simulated drought and flood in a greenhouse experiment and found that flooding conditions resulted in higher germination percentage of C. gynandra than drought. My study found that the vegetative, and flowering phenology of dryland plants is responsive to climate change, with differential responses across taxonomic and functional groups, and aridity zones, which could alter the structure and function of these systems.
ContributorsKangombe, Fransiska Ndiiteela (Author) / Throop, Heather (Thesis advisor) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Pigg, Kathleen (Committee member) / Hultine, Kevin (Committee member) / Kwembeya, Ezekeil (Committee member) / Arizona State University (Publisher)
Created2023
171664-Thumbnail Image.png
Description
Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will become even more central. Despite this, the current understanding of

Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will become even more central. Despite this, the current understanding of FEW systems in metropolitan regions is limited. In this dissertation, the key factors leading to a more sustainable FEW system are identified in the metropolitan area of Phoenix, Arizona using the integrated WEAP-MABIA-LEAP platform. In this region, the FEW nexus is challenged by dramatic population growth, competition among increasing FEW demand, and limited water availability that could further decrease under climate change. First, it was shown that the WEAP platform allows the reliable simulations of water allocations from supply sources to demand sectors and that agriculture is a key stressor of the nexus, which will require additional groundwater (+83%) and energy (+15%) if cropland area is preserved over the next 50 years. Second, the climate change impacts on the food-water nexus were quantified by applying the WEAP-MABIA model with climate projections up to 2100 from 27 GCMs under different warming levels. It was found that the increases in temperature will lead to higher atmospheric evaporation demand that will, in turn, reduce crop production at a rate of -4.8% per decade. In the last part, the fully integrated WEAP-MABIA-LEAP platform was applied to investigate future scenarios of the FEW nexus in the metropolitan region. Several scenarios targeting each FEW sector were compared through sustainability indicators quantifying availability/consumption, reliability, and productivity of the three resources. Results showed that increasing renewable energy and changing cropping patterns will increase the FEW nexus sustainability compared to business-as-usual conditions. The findings of this dissertation, along with its analytical approach, support policy making towards integrated FEW governance and sustainable development.
ContributorsGuan, Xin (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Vivoni, Enrique (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2022