Matching Items (40)
158448-Thumbnail Image.png
Description
Coronaviruses are the causative agents of SARS, MERS and the ongoing COVID-19 pandemic. Coronavirus envelope proteins have received increasing attention as drug targets, due to their multiple functional roles during the infection cycle. The murine coronavirus mouse hepatitis virus strain A59, a hepatic and neuronal tropic coronavirus, is considered a

Coronaviruses are the causative agents of SARS, MERS and the ongoing COVID-19 pandemic. Coronavirus envelope proteins have received increasing attention as drug targets, due to their multiple functional roles during the infection cycle. The murine coronavirus mouse hepatitis virus strain A59, a hepatic and neuronal tropic coronavirus, is considered a prototype of the betacoronaviruses. The envelope protein of the mouse hepatitis virus (MHV-E) was extensively screened with various membrane mimetics by solution state nuclear magnetic resonance spectroscopy to find a suitable mimetic, which allowed for assignment of ~97% of the backbone atoms in the transmembrane region. Following resonance assignments, the binding site of the ion channel inhibitor hexamethylene amiloride (HMA) was mapped to MHV-E using chemical shift perturbations in both amide and aromatic transverse relaxation optimized spectroscopy (TROSY) spectra, which indicated the inhibitor binding site is located at the N-terminal opening of the channel, in accord with one of the proposed HMA binding sites in the envelope protein from the related SARS (severe acute respiratory syndrome) betacoronavirus. Structure calculation of residues M1-K38 of MHV-E, encompassing the transmembrane region, is currently in progress using dihedral angle restraints obtained from isotropic chemical shifts and distance restraints obtained from manually assigned NOE cross-peaks, with the ultimate aim of generating a model of the MHV-E viroporin bound to the inhibitor HMA. This work outlines the first NMR studies on MHV-E, which have provided a foundation for structure based drug design and probing interactions, and the methods can be extended, with suitable modifications, to other coronavirus envelope proteins.
ContributorsBaravati, Bobby (Author) / Fromme, Petra (Thesis advisor) / Hansen, Debra (Thesis advisor) / Van Horn, Wade (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2020
158512-Thumbnail Image.png
Description
In this study, the stability of two protein homo-oligomers, the β clamp (homodimer) from E. coli and the Proliferation Cell Nuclear Antigen (PCNA) from the yeast cell, were characterized. These clamps open through one interface by another protein called clamp loader, which helps it to encircle the DNA template strand.

In this study, the stability of two protein homo-oligomers, the β clamp (homodimer) from E. coli and the Proliferation Cell Nuclear Antigen (PCNA) from the yeast cell, were characterized. These clamps open through one interface by another protein called clamp loader, which helps it to encircle the DNA template strand. The β clamp protein binds with DNA polymerase and helps it to slide through the template strand and prevents its dissociation from the template strand. The questions need to be to answered in this research are, whether subunit stoichiometry contributes to the stability of the clamp proteins and how does the clamp loader open up the clamp, does it have to exert force on the clamp or does it take advantage of the dynamic behavior of the interface?

The x-ray crystallography structure of the β clamp suggests that there are oppositely charged amino acid pairs present at the interface of the dimer. They can form strong electrostatic interactions between them. However, for Proliferation Cell Nuclear Antigen (PCNA), there are no such charged amino acids present at its interface. High sodium chloride (NaCl) concentrations were used to disrupt the electrostatic interactions at the interface. The role of charged pairs in the clamp interface was characterized by measuring the apparent diffusion times (\tau_{app}) with fluorescence correlation spectroscopy (FCS). However, the dissociation of the Proliferation Cell Nuclear Antigen (PCNA) trimer does not depend on sodium chloride (NaCl) concentration.

In the next part of my thesis, potassium glutamate (KGlu) and glycine betaine (GB) were used to investigate their effect on the stability of both clamp proteins. FCS experiments with labeled β clamp and Proliferation Cell Nuclear Antigen (PCNA) were performed containing different concentrations of potassium glutamate and glycine betaine in the solution, showed that the apparent diffusion time\ {(\tau}_{app}) increases with potassium glutamate and glycine betaine concentrations, which indicate clamps are forming higher-order oligomers. Solute molecules get excluded from the protein surface when the binding affinity of the protein surface for water molecules is more than solutes (potassium glutamate, and glycine betaine), which has a net stabilizing effect on the protein structure.
ContributorsPUROHIT, ANIRBAN (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2020
158683-Thumbnail Image.png
Description
This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified

This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified protein was dimeric as shown by native polyacrylamide gel electrophoresis and small angle X-ray scattering (SAXS) analysis, with an abundance of β-strands based on circular dichroism spectroscopy. SAXS data supports the presence of a pore. Furthermore, protein crystals of membrane translocated FopA were obtained with preliminary X-ray diffraction data. The identified crystallization condition provides the means towards FopA structure determination; a valuable tool for structure-based design of anti-tularemia therapeutics.

Next, the nonstructural protein μNS of avian reoviruses was investigated using in vivo crystallization and serial femtosecond X-ray crystallography. Avian reoviruses infect poultry flocks causing significant economic losses. μNS is crucial in viral factory formation facilitating viral replication within host cells. Thus, structure-based targeting of μNS has the potential to disrupt intracellular viral propagation. Towards this goal, crystals of EGFP-tagged μNS (EGFP-μNS (448-605)) were produced in insect cells. The crystals diffracted to 4.5 Å at X-ray free electron lasers using viscous jets as crystal delivery methods and initial electron density maps were obtained. The resolution reported here is the highest described to date for μNS, which lays the foundation towards its structure determination.

Finally, structural, and functional studies of human Threonine aspartase 1 (Taspase1) were performed. Taspase1 is overexpressed in many liquid and solid malignancies. In the present study, using strategic circular permutations and X-ray crystallography, structure of catalytically active Taspase1 was resolved. The structure reveals the conformation of a 50 residues long fragment preceding the active side residue (Thr234), which has not been structurally characterized previously. This fragment adopted a straight helical conformation in contrast to previous predictions. Functional studies revealed that the long helix is essential for proteolytic activity in addition to the active site nucleophilic residue (Thr234) mediated proteolysis. Together, these findings enable a new approach for designing anti-cancer drugs by targeting the long helical fragment.
ContributorsNagaratnam, Nirupa (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2020
158733-Thumbnail Image.png
Description
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually high number of predicted outer surface lipoproteins of unknown function but with multiple complex roles in pathogenesis, and an unusually low number of predicted outer membrane proteins, given the necessity of bringing in the required nutrients for pathogen survival. Cellular processing of bacterial membrane proteins is complex, and structures of proteins from Bb have all been solved without the N-terminal signal sequence that directs the protein to proper folding and placement in the membrane. This dissertation presents the first membrane-directed expression in E. coli of several Bb proteins involved in the pathogenesis of Lyme disease. For the first time, I present evidence that the predicted lipoprotein, BBA57, forms a large alpha-helical homo-multimeric complex in the OM, is soluble in several detergents, and purifiable. The purified BBA57 complex forms homogeneous, 10 nm-diameter particles, visible by negative stain electron microscopy. Two-dimensional class averages from negative stain images reveal the first low-resolution particle views, comprised of a ring of subunits with a plug on top, possibly forming a porin or channel. These results provide the first evidence to support our theories that some of the predicted lipoproteins in Bb form integral-complexes in the outer membrane, and require proper membrane integration to form functional proteins.
ContributorsRobertson, Karie (Author) / Hansen, Debra T. (Thesis advisor) / Fromme, Petra (Thesis advisor) / Van Horn, Wade (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2020
157708-Thumbnail Image.png
Description
Phenotypic and molecular profiling demonstrates a high degree of heterogeneity in the breast tumors. TP53 tumor suppressor is mutated in 30% of all breast tumors and the mutation frequency in basal-like subtype is as high as 80% and co-exists with several other somatic mutations in different genes. It was hypothesized

Phenotypic and molecular profiling demonstrates a high degree of heterogeneity in the breast tumors. TP53 tumor suppressor is mutated in 30% of all breast tumors and the mutation frequency in basal-like subtype is as high as 80% and co-exists with several other somatic mutations in different genes. It was hypothesized that tumor heterogeneity is a result of a combination of neo-morphic functions of specific TP53 driver mutations and distinct co-mutations or the co-drivers for each type of TP53 mutation. The 10 most common p53 missense mutant proteins found in breast cancer patients were ectopically expressed in normal-like mammary epithelial cells and phenotypes associated with various hallmarks of cancer examined. Supporting the hypothesis, a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and polarity was observed in the mutants compared to wildtype p53 expressing cells. The missense mutants R248W, R273C and Y220C were most aggressive. Integrated analysis of ChIP and RNA seq showed distinct promoter binding profiles of the p53 mutant proteins different than wildtype p53, implying altered transcriptional activity of mutant p53 proteins and the phenotypic heterogeneity of tumors. Enrichment and model-based pathway analyses revealed dysregulated adherens junction and focal adhesion pathways associated with the aggressive p53 mutants. As several somatic mutations co-appear with mutant TP53, we performed a functional assay to fish out the relevant collaborating driver mutations, the co-drivers. When PTEN was deleted by CRISPR-Cas9 in non-invasive p53-Y234C mutant cell, an increase in cell invasion was observed justifying the concept of co-drivers. A genome wide CRISPR library-based screen on p53-Y234C and R273C cells identified separate candidate co-driver mutations that promoted cell invasion. The top candidates included several mutated genes in breast cancer patients harboring TP53 mutations and were associated with cytoskeletal and apoptosis resistance pathways. Overall, the combined approach of molecular profiling and functional genomics screen highlighted distinct sets of co-driver mutations that can lead to heterogeneous phenotypes and promote aggressiveness in cells with different TP53 mutation background, which can guide development of novel targeted therapies.
ContributorsPal, Anasuya (Author) / LaBaer, Joshua (Thesis advisor) / Roberson, Robert (Committee member) / Van Horn, Wade (Committee member) / Maley, Carlo (Committee member) / Arizona State University (Publisher)
Created2019
158015-Thumbnail Image.png
Description
Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin

Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis have been extensively researched, but its function on immune cells was not widely explored. In this research, the cell biology and biochemical evidences show that PTN can regulate various Mac-1-expressing cells functions through the activation of the extracellular signal regulated kinases. Direct interactions between PTN and the αM I-domain, the major ligand-binding domain of Mac-1, has been shown using biolayer interferometry analyses and confirmed by solution NMR spectroscopy. The binding epitopes and the binding mechanism of PTN and αM I-domain interaction were further revealed by peptide array analysis and microscale thermophoresis. The data suggested that PTN’s thrombospondin type-1 repeat (TSR) domains and αM I-domain metal-ion-dependent adhesion site (MIDAS) are the major binding sites. In addition, this interaction followed a novel metal-ion independent binding mechanism which has not been found in other integrins. After a series of characterizations of αM I-domain using both experimental and computational methods, it showed that activated αM I-domain is significantly more dynamic than inactive αM I-domain, and the dynamics seem to modulate the effect of Mg2+ on its interactions with cationic ligands. To further explore the PTN induced Mac-1 structure rearrangement, intact Mac-1 was studied by negative stain electron microscopy. The results showed that the Mac-1 exhibited a very heterogeneous conformation distribution in detergents. In contrast, the Mac-1 adopted predominantly the bent conformation in phospholipid nanodisc condition. This Mac-1 nanodisc model provides a new platform for studying intact Mac-1 activation mechanism in a more physiologically relevant manner in the future.
ContributorsShen, Di (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020
161297-Thumbnail Image.png
Description
Since the inception of DNA nanotechnology, DNA has found itself poised as one of the most robust self-assembling building blocks due to its well understood double helix structure formed by two anti-parallel strands of DNA held together by hydrogen bond from nucleobases which also provides the material programmability due to

Since the inception of DNA nanotechnology, DNA has found itself poised as one of the most robust self-assembling building blocks due to its well understood double helix structure formed by two anti-parallel strands of DNA held together by hydrogen bond from nucleobases which also provides the material programmability due to the well-understood Watson Crick base pairing rules. These capabilities have led to the exponential increase in publications showing off intricate and remarkable designs alongside ever-expanding applications. However, as the field expands there is an apparent lack of chemical diversity and functionality. To combat this my research focused on creating hybrid peptide oligonucleotide conjugates (POC) where the conjugated peptide could add chemical and structural diversity using the 20 canonical amino acids and various peptide secondary structures. In this work, I conjugate DNA to the self-assembling peptide building block the coiled coil. The coiled coil motif is formed from the self-assembly of two or more α-helical peptides and, like DNA, the coiled coil has well understood programmability. Together as a conjugate, the DNA and coiled coil, create a new self-assembling building block capable of two orthogonal self-assembling modes that can work in tandem. In this work, I used DNA coiled coil conjugates to show the capability to create first of their kind hybrid DNA/coiled coil one-dimensional fibers (chapter 2), integrate proteins (chapter 3), and to create hybrid cage structures (chapter 4). Finally, a POC hydrogel is created using the polypeptide gelatin with DNA crosslinks to create a reversible stiffening gel using toe-hold mediated strand displacement (chapter 5).
ContributorsBuchberger, Alex Richard (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Mills, Jeremy (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2021
128458-Thumbnail Image.png
Description

The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K+) channel to enable K+ recycling coupled to transepithelial chloride ion (Cl-) secretion, a physiologically critical cellular transport process in various organs

The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K+) channel to enable K+ recycling coupled to transepithelial chloride ion (Cl-) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K+ recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated “up” state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the “CF gender gap.”

ContributorsKroncke, Brett M. (Author) / Van Horn, Wade (Author) / Smith, Jarrod (Author) / Kang, CongBao (Author) / Welch, Richard C. (Author) / Song, Yuanli (Author) / Nannemann, David P. (Author) / Taylor, Keenan C. (Author) / Sisco, Nicholas J. (Author) / George, Alfred L. (Author) / Meiler, Jens (Author) / Vanoye, Carlos G. (Author) / Sanders, Charles R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-09
128463-Thumbnail Image.png
Description

Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA

Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.

ContributorsAnosova, Irina (Author) / Kowal, Ewa A. (Author) / Dunn, Matthew R. (Author) / Chaput, John C. (Author) / Van Horn, Wade (Author) / Egli, Martin (Author) / Biodesign Institute (Contributor)
Created2015-12-15
Description
The primary channel responsible for cold thermo-transduction in mammals is the transient receptor potential melastatin 8 (TRPM8) channel. TRPM8 is a polymodal, nonselective cation channel with an activation that is dependent on a variety of signals, including the membrane potential, calcium concentration, temperature, and ligands such as menthol. Mathematical modeling

The primary channel responsible for cold thermo-transduction in mammals is the transient receptor potential melastatin 8 (TRPM8) channel. TRPM8 is a polymodal, nonselective cation channel with an activation that is dependent on a variety of signals, including the membrane potential, calcium concentration, temperature, and ligands such as menthol. Mathematical modeling provides valuable insight into biochemical phenomena, such as the activity of these channels, which are difficult to observe experimentally. Here, we propose a TRPM8 gating model, represented as a system of ordinary differential equations with menthol, calcium, voltage, and temperature dependencies. We use voltage-clamp data from transfected HEK293 cells in the presence of menthol to create a menthol-dependent voltage shift of activation. We fit the parameters of the TRPM8 gating model to replicate experimental TRPM8 transfected HEK293 cell voltage clamp electrophysiology data using a genetic algorithm. Using k-means clustering, we note eight clusters within 110 total parameter sets consisting of parameter solutions that provide a good fit to the experimental data. We then replicate novel fixed-voltage temperature ramp and fixed-temperature voltage ramp experimental data, demonstrating that our model can replicate the dynamic behaviors of TRPM8. With this TRPM8 gating model, we analyze the various parameter sets obtained from the genetic algorithm and find that different parameter combinations of calcium decay, calcium voltage shift of activation, and temperature sensitivity are able to match static voltage clamp data although differ in their effects on hysteresis and maximal current within prolonged temperature ramp simulations.
ContributorsDudebout, Eric (Author) / Crook, Sharon (Thesis director) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05