Matching Items (8)
Filtering by

Clear all filters

136385-Thumbnail Image.png
Description
The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an

The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an extremely cost effective way. Higher integration leads to electronics with increased functionality and a smaller finished product. The MESFETs are designed in-house by the research group led by Dr. Trevor Thornton. The layouts are then sent to multi-project wafer (MPW) integrated circuit foundry companies, such as the Metal Oxide Semiconductor Implementation Service (MOSIS) to be fabricated. Once returned, the electrical characteristics of the devices are measured. The MESFET has been implemented in various applications by the research group, including the low dropout linear regulator (LDO) and RF power amplifier. An advantage of the MESFET is that it can function in extreme environments such as space, allowing for complex electrical systems to continue functioning properly where traditional transistors would fail.
ContributorsKam, Jason (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
137186-Thumbnail Image.png
Description
MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's

MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's history and DLTS (deep level transient spectroscopy) are offered.
ContributorsTerrell, Catherine Elaine (Author) / Thornton, Trevor (Thesis director) / Young, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
135269-Thumbnail Image.png
Description
Computer Science and Dance are choice driven disciplines. The output of their processes are compositions of experience. Dancers are not computers and computers are not people but there are comparable traces of humanity in the way each interpret and interact with their respective inputs, outputs, and environments. These overlaps are

Computer Science and Dance are choice driven disciplines. The output of their processes are compositions of experience. Dancers are not computers and computers are not people but there are comparable traces of humanity in the way each interpret and interact with their respective inputs, outputs, and environments. These overlaps are perhaps not obvious, but in an increasingly specialized world it is important to discuss them. Dynamic Programming and improvisational movement exist within exclusive corners of their respective fields and are characterized by their inherent adaption to change. Inspired by the work of Ivar Hagendoorn, John Cage and other interdisciplinary artists, complexMovement is motivated by the need to create space for intersections between these two powerful groups and find overlaps in the questions they ask to achieve their goals. Dance and Computer Science are just one example of hidden partnerships between their respective fields. Their respective sides allow for ample side by side comparisons but for the purpose of this work, we will focus upon two smaller sectors of their studies: improvisational movement and the design of Dynamic Programming algorithms.
ContributorsOhlsen, Lai Yi Ni (Author) / Britt, Melissa (Thesis director) / Crissman, Angel (Committee member) / Standley, Eileen (Committee member) / Computer Science and Engineering Program (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The topic of my creative project centers on the question of "How can the audience's choices influence dancers' improvisation?" This dance work seeks to redefine the relationship between audience and performers through integration of audience, technology, and movement in real-time. This topic was derived from the fields of Computer Science

The topic of my creative project centers on the question of "How can the audience's choices influence dancers' improvisation?" This dance work seeks to redefine the relationship between audience and performers through integration of audience, technology, and movement in real-time. This topic was derived from the fields of Computer Science and Dance. To answer my main question, I need to explore how I can interconnect the theory of Computer Science/fundamentals of a web application and the elements of dance improvisation. This topic interests me because it focuses on combining two studies that do not seem related. However, I find that when I am coding a web application, I can insert blocks of code. This relates to dance improvisation where I have a movement vocabulary, and I can insert different moves based on the context. The idea of gathering data from an audience in real time also interests me. I find that data is most useful when a story can be deduced from that data. To figure out how I can use dance to create and tell a story about the data that is collected, I find that to be intriguing as well. The main goals of my Creative Project are to learn the skills needed to develop a web application using the knowledge and theory that I am acquiring through Computer Science as well as learning about the skills needed to produce a performance piece. My object for the overall project is to create an audience-interactive experience that presents choices for dancers and creates a connection between two completely different studies: Computer Science and Dance. My project will consist of having the audience enter their answers to preset questions via an online voting application. The stage background screen will be utilized to show the question results in percentages in the form of a chart. The dancers will then serve as a live interpretation of these results. This Creative Project will serve as a gateway between the work that has been cultivated in my studies and the real world. The methods involve exploring movement qualities in improvisation, communicating with my cast about what worked best for the transitions between each section of the piece, and testing for the web applications. I learned the importance of having structure within improvisational movement for the purpose of choreography. The significance of structure is that it provides direction, clarity, and a sense of unification for the dancers. I also learned the basics of the programming language, Python, in order to develop the two real-time web applications. The significance of learning Python is that I will be able to add this to my skillset of programming languages as well as build upon my knowledge of Computer Science and develop more real-world applications in the future.
ContributorsNgai, Courtney Taylor (Author) / Britt, Melissa (Thesis director) / Standley, Eileen (Committee member) / Computer Science and Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This study focuses on identifying which knee injuries commonly afflict the Arizona State University students who dance contemporary ballet. The study investigates why and how these injuries occur through survey data and in-depth physical and written assessments with a test pool of five dancers. The study discovered three themes that

This study focuses on identifying which knee injuries commonly afflict the Arizona State University students who dance contemporary ballet. The study investigates why and how these injuries occur through survey data and in-depth physical and written assessments with a test pool of five dancers. The study discovered three themes that emerged from the data: a lack of posterior chain engagement, lack of lateral support in the knees, and weight sinking into the knees and ankles. All of theses themes relate back to a lack of use of functional rotation, and its key relationship in supporting contemporary ballet movement. Though current and past studies address some of these issues, the goal of this study was to create a more holistic solution to these issues by including multiple perspectives: kinesiology, somatics, and an understanding that each individual has a unique anatomy with which the individual needs to adapt. As a result, a more holistic training program including these perspectives was created as a result of this study.
ContributorsSiegfried, Jordyn Taylor (Author) / Roses-Thema, Cynthia (Thesis director) / Standley, Eileen (Committee member) / Lively, Paul (Committee member) / School of International Letters and Cultures (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of

Every engineer is responsible for completing a capstone project as a culmination of accredited university learning to demonstrate technical knowledge and enhance interpersonal skills, like teamwork, communication, time management, and problem solving. This project, with three or four engineers working together in a group, emphasizes not only the importance of technical skills acquired through laboratory procedures and coursework, but the significance of soft skills as one transitions from a university to a professional workplace; it also enhances the understanding of an engineer's obligation to ethically improve society by harnessing technical knowledge to bring about change. The CC2541 Smart SensorTag is a device manufactured by Texas Instruments that focuses on the use of wireless sensors to create low energy applications, or apps; it is equipped with Bluetooth Smart, which enables it to communicate wirelessly with similar devices like smart phones and computers, assisting greatly in app development. The device contains six built-in sensors, which can be utilized to track and log personal data in real-time; these sensors include a gyroscope, accelerometer, humidifier, thermometer, barometer, and magnetometer. By combining the data obtained through the sensors with the ability to communicate wirelessly, the SensorTag can be used to develop apps in multiple fields, including fitness, recreation, health, safety, and more. Team SensorTag chose to focus on health and safety issues to complete its capstone project, creating applications intended for use by senior citizens who live alone or in assisted care homes. Using the SensorTag's ability to track multiple local variables, the team worked to collect data that verified the accuracy and quality of the sensors through repeated experimental trials. Once the sensors were tested, the team developed applications accessible via smart phones or computers to trigger an alarm and send an alert via vibration, e-mail, or Tweet if the SensorTag detects a fall. The fall detection service utilizes the accelerometer and gyroscope sensors with the hope that such a system will prevent severe injuries among the elderly, allow them to function more independently, and improve their quality of life, which is the obligation of engineers to better through their work.
ContributorsMartin, Katherine Julia (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165897-Thumbnail Image.png
Description

Aging is a universal process that every being encounters on their journey of life. The effect of dance as a form of improvement of physical and well-being on the aging body brings upon the question of the impact of somatic-based movement, specifically gestural movement on the perceptions of aging within

Aging is a universal process that every being encounters on their journey of life. The effect of dance as a form of improvement of physical and well-being on the aging body brings upon the question of the impact of somatic-based movement, specifically gestural movement on the perceptions of aging within older and younger adults through a bi-cultural lens of the United States and India. This was investigated using a series of creative partnership workshops that included listening, drawing, and culminating movement activities, followed by a group discussion about the creative process. There were four different participant groups: a group of college students taking an Aging in American Culture collegiate class, a Somatic Practices collegiate dance class, a group of older adults at the Tempe Multigenerational Center, and a group of older adults in Bangalore, India. Inter-generational and cross-cultural observations were discussed, and it was seen that the workshops were able to foster feelings of community and camaraderie among participants depending on the group’s relationship to dance-making. From the research, a dance performance was developed and performed specifically with women of color in ASU’s Dance program with the choreographic process discussed in detail, along with key takeaways about facilitating a multi-dimensional experience for the dancers and choreographer. Future directions for the work include working with intergenerational populations and researching community effects on gendered aging experiences across cultures in the dance world.

ContributorsDabeer, Shreya (Author) / Fitzgerald, Mary (Thesis director) / Standley, Eileen (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Psychology (Contributor)
Created2022-05