Matching Items (18)
152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
151840-Thumbnail Image.png
Description
Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to

Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to resist the deformations associated with change in moisture content (matric suction) in the soil. The problem is more pronounced in arid and semi arid regions with drying periods followed by wet season resulting in large changes in soil suction. Moisture content change causes volume change in expansive soil which causes serious damage to the structures. In order to mitigate these ill effects various mitigation are adopted. The most commonly adopted method in the US is the removal and replacement of upper soils in the profile. The remove and replace method, although heavily used, is not well understood with regard to its impact on the depth of soil wetting or near-surface differential soil movements. In this study the effectiveness of the remove and replace method is studied. A parametric study is done with various removal and replacement materials used and analyzed to obtain the optimal replacement depths and best material. The depth of wetting and heave caused in expansive soil profile under climatic conditions and common irrigation scenarios are studied for arid regions. Soil suction changes and associated soil deformations are analyzed using finite element codes for unsaturated flow and stress/deformation, SVFlux and SVSolid, respectively. The effectiveness and fundamental mechanisms at play in mitigation of expansive soils for remove and replace methods are studied, and include (1) its role in reducing the depth and degree of wetting, and (2) its effect in reducing the overall heave potential, and (3) the effectiveness of this method in pushing the seat of movement deeper within the soil profile to reduce differential soil surface movements. Various non-expansive replacement layers and different surface flux boundary conditions are analyzed, and the concept of optimal depth and soil is introduced. General observations are made concerning the efficacy of remove and replace as a mitigation method.
ContributorsBharadwaj, Anushree (Author) / Houston, Sandra L. (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2013
153049-Thumbnail Image.png
Description
Obtaining high-quality experimental designs to optimize statistical efficiency and data quality is quite challenging for functional magnetic resonance imaging (fMRI). The primary fMRI design issue is on the selection of the best sequence of stimuli based on a statistically meaningful optimality criterion. Some previous studies have provided some guidance and

Obtaining high-quality experimental designs to optimize statistical efficiency and data quality is quite challenging for functional magnetic resonance imaging (fMRI). The primary fMRI design issue is on the selection of the best sequence of stimuli based on a statistically meaningful optimality criterion. Some previous studies have provided some guidance and powerful computational tools for obtaining good fMRI designs. However, these results are mainly for basic experimental settings with simple statistical models. In this work, a type of modern fMRI experiments is considered, in which the design matrix of the statistical model depends not only on the selected design, but also on the experimental subject's probabilistic behavior during the experiment. The design matrix is thus uncertain at the design stage, making it diffcult to select good designs. By taking this uncertainty into account, a very efficient approach for obtaining high-quality fMRI designs is developed in this study. The proposed approach is built upon an analytical result, and an efficient computer algorithm. It is shown through case studies that the proposed approach can outperform an existing method in terms of computing time, and the quality of the obtained designs.
ContributorsZhou, Lin (Author) / Kao, Ming-Hung (Thesis advisor) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Welfert, Bruno (Committee member) / Arizona State University (Publisher)
Created2014
Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
150460-Thumbnail Image.png
Description
Performance improvements have largely followed Moore's Law due to the help from technology scaling. In order to continue improving performance, power-efficiency must be reduced. Better technology has improved power-efficiency, but this has a limit. Multi-core architectures have been shown to be an additional aid to this crusade of increased power-efficiency.

Performance improvements have largely followed Moore's Law due to the help from technology scaling. In order to continue improving performance, power-efficiency must be reduced. Better technology has improved power-efficiency, but this has a limit. Multi-core architectures have been shown to be an additional aid to this crusade of increased power-efficiency. Accelerators are growing in popularity as the next means of achieving power-efficient performance. Accelerators such as Intel SSE are ideal, but prove difficult to program. FPGAs, on the other hand, are less efficient due to their fine-grained reconfigurability. A middle ground is found in CGRAs, which are highly power-efficient, but largely programmable accelerators. Power-efficiencies of 100s of GOPs/W have been estimated, more than 2 orders of magnitude greater than current processors. Currently, CGRAs are limited in their applicability due to their ability to only accelerate a single thread at a time. This limitation becomes especially apparent as multi-core/multi-threaded processors have moved into the mainstream. This limitation is removed by enabling multi-threading on CGRAs through a software-oriented approach. The key capability in this solution is enabling quick run-time transformation of schedules to execute on targeted portions of the CGRA. This allows the CGRA to be shared among multiple threads simultaneously. Analysis shows that enabling multi-threading has very small costs but provides very large benefits (less than 1% single-threaded performance loss but nearly 300% CGRA throughput increase). By increasing dynamism of CGRA scheduling, system performance is shown to increase overall system performance of an optimized system by almost 350% over that of a single-threaded CGRA and nearly 20x faster than the same system with no CGRA in a highly threaded environment.
ContributorsPager, Jared (Author) / Shrivastava, Aviral (Thesis advisor) / Gupta, Sandeep (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2011
156420-Thumbnail Image.png
Description
The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and

The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and show a collective rhythm. Kuramoto-like

dynamics are considered a relevant model for instabilities of the AC-power grid which

operates in synchrony under standard conditions but exhibits, in a state of failure,

segmentation of the grid into desynchronized clusters.

In this dissertation the minimum coupling strength required to ensure total frequency

synchronization in a Kuramoto system, called the critical coupling, is investigated.

For coupling strength below the critical coupling, clusters of oscillators form

where oscillators within a cluster are on average oscillating with the same long-term

frequency. A unified order parameter based approach is developed to create approximations

of the critical coupling. Some of the new approximations provide strict lower

bounds for the critical coupling. In addition, these approximations allow for predictions

of the partially synchronized clusters that emerge in the bifurcation from the

synchronized state.

Merging the order parameter approach with graph theoretical concepts leads to a

characterization of this bifurcation as a weighted graph partitioning problem on an

arbitrary networks which then leads to an optimization problem that can efficiently

estimate the partially synchronized clusters. Numerical experiments on random Kuramoto

systems show the high accuracy of these methods. An interpretation of the

methods in the context of power systems is provided.
ContributorsGilg, Brady (Author) / Armbruster, Dieter (Thesis advisor) / Mittelmann, Hans (Committee member) / Scaglione, Anna (Committee member) / Strogatz, Steven (Committee member) / Welfert, Bruno (Committee member) / Arizona State University (Publisher)
Created2018
157240-Thumbnail Image.png
Description
The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset

The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset of instability of the steady-state flow, and explain

in the process the mechanism underlying an intermittent bursting

previously observed. A fairly complete bifurcation picture emerged,

using a combination of computational tools such as selective

frequency damping, edge-state tracking and subspace restriction.

The code was then used to investigate the flow in a 2D square cavity

under stable temperature stratification, an idealized version of a lake

with warmer water at the surface compared to the bottom. The governing

equations are the Navier-Stokes equations under the Boussinesq approximation.

Simulations were done over a wide range of parameters of the problem quantifying

the driving velocity at the top (e.g. wind) and the strength of the stratification.

Particular attention was paid to the mechanisms associated with the onset of

instability of the base steady state, and the complex nontrivial dynamics

occurring beyond onset, where the presence of multiple states leads to a

rich spectrum of states, including homoclinic and heteroclinic chaos.

A third configuration investigates the flow dynamics of a fluid in a rapidly

rotating cube subjected to small amplitude modulations. The responses were

quantified by the global helicity and energy measures, and various peak

responses associated to resonances with intrinsic eigenmodes of the cavity

and/or internal retracing beams were clearly identified for the first time.

A novel approach to compute the eigenmodes is also described, making accessible

a whole catalog of these with various properties and dynamics. When the small

amplitude modulation does not align with the rotation axis (precession) we show

that a new set of eigenmodes are primarily excited as the angular velocity

increases, while triadic resonances may occur once the nonlinear regime kicks in.
ContributorsWu, Ke (Author) / Lopez, Juan (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Tang, Wenbo (Committee member) / Platte, Rodrigo (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019
136422-Thumbnail Image.png
Description
We study an idealized model of a wind-driven ocean, namely a 2-D lid-driven cavity with a linear temperature gradient along the side walls and constant hot and cold temperatures on the top and bottom boundaries respectively. In particular, we determine numerically the response on flow field and temperature stratification associated

We study an idealized model of a wind-driven ocean, namely a 2-D lid-driven cavity with a linear temperature gradient along the side walls and constant hot and cold temperatures on the top and bottom boundaries respectively. In particular, we determine numerically the response on flow field and temperature stratification associated with the velocity of the lid driven by harmonic forcing using the Navier-Stokes equations with Boussinesq approximation in an attempt to gain an understanding of how variations of external forces (such as the wind over the ocean) transfer energy to a system by exciting internal modes through resonances. The time variation of the forcing, accounting for turbulence at the boundary is critical for allowing penetration of energy waves through the stratified medium in which the angles of the internal waves depend on these perturbation frequencies. Determining the results of the interaction of two 45 degree angle wave beams at the center of the cavity is of particular interest.
ContributorsTaylor, Stephanie Lynn (Author) / Welfert, Bruno (Thesis director) / Lopez, Juan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
154096-Thumbnail Image.png
Description
Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses

Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses of virtual systems in this context often ignore significant performance gains that can be acheived with practical modifications to hypervisor and host systems. In this thesis, the network performance of containers and virtual machines are measured with standard network performance tools. The performance of these systems utilizing a standard 3.18.20 Linux kernel is compared to that of a realtime-tuned variant of the same kernel. This thesis motivates improving determinism in virtual systems with modifications to host and guest kernels and thoughtful process isolation. With the system modifications described, the median TCP bandwidth of KVM virtual machines over bridged network interfaces, is increased by 10.8% with a corresponding reduction in standard deviation of 87.6%. Docker containers see a 8.8% improvement in median bandwidth and 4.4% reduction in standard deviation of TCP measurements using similar bridged networking. System tuning also reduces the standard deviation of TCP request/response latency (TCP RR) over bridged interfaces by 86.8% for virtual machines and 97.9% for containers. Hardware devices assigned to virtual systems also see reductions in variance, although not as noteworthy.
ContributorsWelch, James Matthew (Author) / Syrotiuk, Violet R. (Thesis advisor) / Wu, Carole-Jean (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2015
154804-Thumbnail Image.png
Description
Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and

Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations.

The contributions of this work include a detailed comparison between standard and divergence-free radial basis approximations, a study of the Lebesgue constants for divergence-free approximations and their dependence on node placement, and an investigation of the flat limit of divergence-free interpolants. Finally, numerical solvers for the incompressible Navier-Stokes equations in primitive variables are implemented using discretizations based on traditional and divergence-free kernels. The numerical results are compared to reference solutions obtained with a spectral

method.
ContributorsAraujo Mitrano, Arthur (Author) / Platte, Rodrigo (Thesis advisor) / Wright, Grady (Committee member) / Welfert, Bruno (Committee member) / Gelb, Anne (Committee member) / Renaut, Rosemary (Committee member) / Arizona State University (Publisher)
Created2016