Matching Items (12)
154821-Thumbnail Image.png
Description
The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT) -

The principle purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK) and examine the development of that knowledge among pre-service and current math teachers. Seventy-eight current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT) - Mathematics assessment and nine of them took the Cognitively Activating Instruction in Mathematics (COACTIV) assessment. Participants answered questions that demonstrated their understanding of students' challenges and misconceptions, ability to recognize and utilize multiple representations and methods of presenting content, and understanding of tasks and materials that they may be using for instruction. Additionally, participants indicated their college major, institution attended, years of experience, and participation in various other learning opportunities. This data was analyzed to look for changes in knowledge, first among those still in college, then among those already in the field, and finally as a whole group to look for a pattern of growth from pre-service through working in the classroom. I compared these results to the theories of learning espoused by the creators of these two tests to see which model the data supports. The results indicate that growth in PCK occurs among college students during their teacher preparation program, with much less change once a teacher enters the field. Growth was not linear, but best modeled by an s-curve, showing slow initial changes, substantial development during the 2nd and 3rd year of college, and then a leveling off during the last year of college and the first few years working in a classroom. Among current teachers' the only group that demonstrated any measurable growth were teachers who majored in a non-education field. Other factors like internships and professional development did not show a meaningful correlation with PCK. Even though some of these models were statistically significant, they did not account for a substantial amount of the variation among individuals, indicating that personal factors and not programmatic ones may be the primary determinant of a teachers' knowledge.
ContributorsJohnson, Jeffrey (Author) / Middleton, James A. (Thesis advisor) / Marsh, Josephine P (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2016
149628-Thumbnail Image.png
Description
The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to

The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to Algebra II, and their 26 mathematics teachers was employed. All participants completed the Mini-Diagnostic Test (MDT) on aspects of linearity and linear functions, ranked the MDT problems by perceived difficulty, and commented on the nature of the difficulties. Interviews were conducted with 40 students and 20 teachers. A cluster analysis revealed the existence of two groups of students, Group 0 enrolled in courses below or at their grade level, and Group 1 enrolled in courses above their grade level. A factor analysis confirmed the importance of slope and the Cartesian connection for student understanding of linearity and linear functions. There was little variation in student performance on the MDT across grades. Student performance on the MDT increased with more advanced courses, mainly due to Group 1 student performance. The most difficult problems were those requiring identification of slope from the graph of a line. That difficulty persisted across grades, mathematics courses, and performance groups (Group 0, and 1). A comparison of student ranking of MDT problems by difficulty and their performance on the MDT, showed that students correctly identified the problems with the highest MDT mean scores as being least difficult for them. Only Group 1 students could identify some of the problems with lower MDT mean scores as being difficult. Teachers did not identify MDT problems that posed the greatest difficulty for their students. Student interviews confirmed difficulties with slope and the Cartesian connection. Teachers' descriptions of problem difficulty identified factors such as lack of familiarity with problem content or context, problem format and length. Teachers did not identify student difficulties with slope in a geometric context.
ContributorsPostelnicu, Valentina (Author) / Greenes, Carole (Thesis advisor) / Pambuccian, Victor (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2011