Matching Items (17)
Filtering by

Clear all filters

157719-Thumbnail Image.png
Description
Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences

Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences at minimum cost. In contrast to most existing studies, the aim of this study is to obtain optimal designs for brain mapping technology with an ultra-high temporal resolution with respect to some common statistical optimality criteria. The first topic of this work is on finding optimal designs when the primary interest is in estimating the Hemodynamic Response Function (HRF), a function of time describing the effect of a mental stimulus to the brain. A major challenge here is that the design matrix of the statistical model is greatly enlarged. As a result, it is very difficult, if not infeasible, to compute and compare the statistical efficiencies of competing designs. For tackling this issue, an efficient approach is built on subsampling the design matrix and the use of an efficient computer algorithm is proposed. It is demonstrated through the analytical and simulation results that the proposed approach can outperform the existing methods in terms of computing time, and the quality of the obtained designs. The second topic of this work is to find optimal designs when another set of popularly used basis functions is considered for modeling the HRF, e.g., to detect brain activations. Although the statistical model for analyzing the data remains linear, the parametric functions of interest under this setting are often nonlinear. The quality of the de- sign will then depend on the true value of some unknown parameters. To address this issue, the maximin approach is considered to identify designs that maximize the relative efficiencies over the parameter space. As shown in the case studies, these maximin designs yield high performance for detecting brain activation compared to the traditional designs that are widely used in practice.
ContributorsAlghamdi, Reem (Author) / Kao, Ming-Hung (Thesis advisor) / Fricks, John (Committee member) / Pan, Rong (Committee member) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Arizona State University (Publisher)
Created2019
157893-Thumbnail Image.png
Description
One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated noise follows high-order autoregressive models. The main focus of this dissertation is to develop an efficient approach to reduce the amount of the computational resources needed to obtain A-optimal designs for event-related fMRI experiments. One proposed idea is to combine the Kriging approximation method, which is widely used in spatial statistics and computer experiments with a knowledge-based genetic algorithm. Through case studies, a demonstration is made to show that the new search method achieves similar design efficiencies as those attained by the traditional method, but the new method gives a significant reduction in computing time. Another useful strategy is also proposed to find such designs by considering only the boundary points of the parameter space of the correlation parameters. The usefulness of this strategy is also demonstrated via case studies. The first part of this dissertation focuses on finding optimal event-related designs for fMRI with simple trials when each stimulus consists of only one component (e.g., a picture). The study is then extended to the case of compound trials when stimuli of multiple components (e.g., a cue followed by a picture) are considered.
ContributorsAlrumayh, Amani (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Pan, Rong (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2019
158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
ContributorsKhogeer, Hazar Abdulrahman (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2020
158520-Thumbnail Image.png
Description
In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric predictive modeling with big data were developed.

Under sparsity, the structure

In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric predictive modeling with big data were developed.

Under sparsity, the structure of DSDs can allow for the screening and optimization of a system in one step, but in non-sparse situations estimation of second-order models requires augmentation of the DSD. In this work, augmentation strategies for DSDs were considered, given the assumption that the correct form of the model for the response of interest is quadratic. Series of augmented designs were constructed and explored, and power calculations, model-robustness criteria, model-discrimination criteria, and simulation study results were used to identify the number of augmented runs necessary for (1) effectively identifying active model effects, and (2) precisely predicting a response of interest. When the goal is identification of active effects, it is shown that supersaturated designs are sufficient; when the goal is prediction, it is shown that little is gained by augmenting beyond the design that is saturated for the full quadratic model. Surprisingly, augmentation strategies based on the I-optimality criterion do not lead to better predictions than strategies based on the D-optimality criterion.

Computational limitations can render standard statistical methods infeasible in the face of massive datasets, necessitating subsampling strategies. In the big data context, the primary objective is often prediction but the correct form of the model for the response of interest is likely unknown. Here, two new methods of subdata selection were proposed. The first is based on clustering, the second is based on space-filling designs, and both are free from model assumptions. The performance of the proposed methods was explored visually via low-dimensional simulated examples; via real data applications; and via large simulation studies. In all cases the proposed methods were compared to existing, widely used subdata selection methods. The conditions under which the proposed methods provide advantages over standard subdata selection strategies were identified.
ContributorsNachtsheim, Abigael (Author) / Stufken, John (Thesis advisor) / Fricks, John (Committee member) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2020
129299-Thumbnail Image.png
Description

We develop general theory for finding locally optimal designs in a class of single-covariate models under any differentiable optimality criterion. Yang and Stufken [Ann. Statist. 40 (2012) 1665–1681] and Dette and Schorning [Ann. Statist. 41 (2013) 1260–1267] gave complete class results for optimal designs under such models. Based on their

We develop general theory for finding locally optimal designs in a class of single-covariate models under any differentiable optimality criterion. Yang and Stufken [Ann. Statist. 40 (2012) 1665–1681] and Dette and Schorning [Ann. Statist. 41 (2013) 1260–1267] gave complete class results for optimal designs under such models. Based on their results, saturated optimal designs exist; however, how to find such designs has not been addressed. We develop tools to find saturated optimal designs, and also prove their uniqueness under mild conditions.

ContributorsHu, Linwei (Author) / Yang, Min (Author) / Stufken, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01
155868-Thumbnail Image.png
Description
This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way

This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way to design such experiments remains unclear. To address this void, some useful results are developed to guide the selection of optimal experimental designs in such studies. The results are mainly built upon a powerful tool called the complete class approach and a nonlinear optimization algorithm. The complete class approach was originally developed for a univariate response, but it is extended to the case of bivariate responses of mixed variable types. Consequently, the number of candidate designs are significantly reduced. An optimization algorithm is then applied to efficiently search the small class of candidate designs for the D- and A-optimal designs. Furthermore, the optimality of the obtained designs is verified by the general equivalence theorem. In the first part of the study, the focus is on a simple, first-order model. The study is expanded to a model with a quadratic polynomial predictor. The obtained designs can help to render a precise statistical inference in practice or serve as a benchmark for evaluating the quality of other designs.
ContributorsKim, Soohyun (Author) / Kao, Ming-Hung (Thesis advisor) / Dueck, Amylou (Committee member) / Pan, Rong (Committee member) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Arizona State University (Publisher)
Created2017
155598-Thumbnail Image.png
Description
This article proposes a new information-based subdata selection (IBOSS) algorithm, Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the determinant of the information matrix under orthogonal transformations, especially rotations. Extensive simulation results show that the new IBOSS algorithm retains nice asymptotic properties of IBOSS and gives

This article proposes a new information-based subdata selection (IBOSS) algorithm, Squared Scaled Distance Algorithm (SSDA). It is based on the invariance of the determinant of the information matrix under orthogonal transformations, especially rotations. Extensive simulation results show that the new IBOSS algorithm retains nice asymptotic properties of IBOSS and gives a larger determinant of the subdata information matrix. It has the same order of time complexity as the D-optimal IBOSS algorithm. However, it exploits the advantages of vectorized calculation avoiding for loops and is approximately 6 times as fast as the D-optimal IBOSS algorithm in R. The robustness of SSDA is studied from three aspects: nonorthogonality, including interaction terms and variable misspecification. A new accurate variable selection algorithm is proposed to help the implementation of IBOSS algorithms when a large number of variables are present with sparse important variables among them. Aggregating random subsample results, this variable selection algorithm is much more accurate than the LASSO method using full data. Since the time complexity is associated with the number of variables only, it is also very computationally efficient if the number of variables is fixed as n increases and not massively large. More importantly, using subsamples it solves the problem that full data cannot be stored in the memory when a data set is too large.
ContributorsZheng, Yi (Author) / Stufken, John (Thesis advisor) / Reiser, Mark R. (Committee member) / McCulloch, Robert (Committee member) / Arizona State University (Publisher)
Created2017