Matching Items (453)
149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
147851-Thumbnail Image.png
Description

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most opportunities for growth, along with identify a specific market strategy that Company X could do to capture market share within the most opportunistic segment.

ContributorsHamkins, Sean (Co-author) / Raimondi, Ronnie (Co-author) / Gandolfi, Micheal (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147862-Thumbnail Image.png
Description

Suitcases packed, armed with a PowerPoint presentation of matrices and frameworks, and an eloquent vocabulary of “synergies” and “core competencies,” another consultant prepares to deliver million-dollar advice to some of the leading executives of Fortune 500 companies. We all know who they are, but we have no idea what they

Suitcases packed, armed with a PowerPoint presentation of matrices and frameworks, and an eloquent vocabulary of “synergies” and “core competencies,” another consultant prepares to deliver million-dollar advice to some of the leading executives of Fortune 500 companies. We all know who they are, but we have no idea what they do. In 2019, over 20% of the graduating MBA class from Harvard university chose to pursue management consulting, a number that has been progressively increasing from years prior. With over 300 million people in the United States, and another 8 billion across the globe, a decision is being made every nano-second. From which stock to buy to which color socks to purchase, to every innovative (and incompetent) decision made, consultants have a hand in it all. While consultants contribute a healthy service in stimulating the economy and keeping big business, in business, there are a multitude of pitfalls that can occur in the profession and have drastic legal and ethical implications. <br/> To further examine this dichotomy of theoretical versus applied consulting, I decided to put my consulting skills to the test. By partnering with the New Venture Group, we delivered consulting services to Marni Anbar, the founder and creator of the DiscoverRoom, a hands-on, self-directed initiative allowing students to explore their curiosity in fields ranging from evolutionary studies to geology and astronomy. In response to the DiscoverRoom’s increasing demand and capacity to grow, New Venture Group consultants engaged with Marni Anbar in an attempt to analyze the important question of “what steps (from a business perspective) should Marni consider to further the DiscoverRoom (in a way that can make it both profitable and continue to serve as a creative space to further child development)?” <br/> This project was a hands-on way to examine the fundamentally complicated relationship that exists between consultants and their clients, and whether or not it was possible for college students to advise an initiative to remove the disparities that exist in STEM education in one of the worst-rated states for public school education in the country. By applying the research and findings uncovered when analyzing the theory of management consulting to this real life engagement, several parallels were discovered. As in the case of many consultants, our solution was never implemented due to external factors, which further creates a gap in allowing us to analyze whether or not our proposed solutions contained any value or not. As seen in our case, consultants often fall victim to not having their solution implemented due to a variety of external environmental trends and factors. This “incomplete” understanding of the picture further creates an aura of skepticism behind consultants and the work they do.

ContributorsTahiliani, Krishn Rajesh (Author) / Brian, Jennifer D. (Thesis director) / Koretz, Lora (Committee member) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148038-Thumbnail Image.png
Description

This paper goes does a market analysis on Inter Active Flat Panel Displays (IFPDs), and talks about how company X can grow its market share in IFPDs.

ContributorsKoroli, Eri (Co-author) / Phillips, Maya (Co-author) / Morales, Herwin (Co-author) / Hauck, Tanner (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The PPP Loan Program was created by the CARES Act and carried out by the Small Business Administration (SBA) to provide support to small businesses in maintaining their payroll during the Coronavirus pandemic. This program was approved for $350 billion, but this amount was expanded by an additional $320 billion

The PPP Loan Program was created by the CARES Act and carried out by the Small Business Administration (SBA) to provide support to small businesses in maintaining their payroll during the Coronavirus pandemic. This program was approved for $350 billion, but this amount was expanded by an additional $320 billion to meet the demand by struggling businesses, since initial funding was exhausted under two weeks.<br/><br/>Significant controversy surrounds the program. In December 2020, the Department of Justice reported 90 individuals were charged for fraudulent use of funds, totaling $250 million. The loans, which were intended for small business, were actually approved for 450 public companies. Furthermore, the methods of approval are<br/>shrouded in mystery. In an effort to be transparent, the SBA has released information about loan recipients. Conveniently, the SBA has released information of all recipients. Detailed information was released for 661,218 recipients who have received a PPP loan in excess of $150,000. These recipients are the central point of this research.<br/><br/>This research sought to answer two primary questions: how did the SBA determine which loans, and therefore which industries are approved, and did the industries most affected by the pandemic receive the most in PPP loans, as intended by Congress? It was determined that, generally, PPP Loans were approved on the basis of employment percentages relative to the individual state. Furthermore, in general, the loans approved were approved fairly, with respect to the size of the industry. The loans, when adjusted for GDP and Employment factors, yielded a clear ranking that prioritized vulnerable industries first.<br/><br/>However, significant questions remain. The effectiveness of the PPP has been hindered by unclear incentives and negative outcomes, characterized by a government program that has essentially been rushed into service. Furthermore, limitations of available data to regress and compare the SBA's approved loans are not representative of small business.

ContributorsMaglanoc, Julian (Author) / Kenchington, David (Thesis director) / Cassidy, Nancy (Committee member) / Department of Finance (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148096-Thumbnail Image.png
Description

Student academic performance has far-reaching implications not only on individual students but also the universities and colleges they attend. Student academic performance can affect their time in school as well as their future earning potential, and colleges and universities have a shared interest in the academic performance and retention of

Student academic performance has far-reaching implications not only on individual students but also the universities and colleges they attend. Student academic performance can affect their time in school as well as their future earning potential, and colleges and universities have a shared interest in the academic performance and retention of their students as many state and federal funding opportunities consider these metrics when allocating taxpayer dollars. To assist in the mutual desire for students to succeed, the Calm Connection start-up venture formed with the goal of integrating biofeedback therapy with a student’s unique education needs. For students, one of the largest barriers to effective learning is issues of focus and information retention, and the repeated use of biofeedback therapy trains students to overcome these focus issues and works in conjunction with our app’s study aid and scheduling ability.

ContributorsSchacht, Gregory Philip (Co-author) / Snow, Kylie (Co-author) / Silverman, Marcus (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147893-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsQian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / English, Corinne (Co-author) / Agee, Claire (Co-author) / Mattson, Kyle (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05