Matching Items (1,598)
Filtering by

Clear all filters

152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
153329-Thumbnail Image.png
Description
Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to

Seismic observations have revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath Pacific and Africa. One hypothesis for the origin of LLSVPs is that they are caused by accumulation of subducted oceanic crust on the core-mantle boundary (CMB). Here, I perform high resolution geodynamical calculations to test this hypothesis. The result shows that it is difficult for a thin (~ 6 km) subducted oceanic crust to accumulate on the CMB, and the major part of it is viscously stirred into the surrounding mantle. Another hypothesis for the origin of LLSVPs is that they are caused by thermochemical piles of more-primitive material which is remnant of Earth's early differentiation. In such case, a significant part of the subducted oceanic crust would enter the more-primitive reservoir, while other parts are either directly entrained into mantle plumes forming on top of the more-primitive reservoir or stirred into the background mantle. As a result, mantle plumes entrain a variable combination of compositional components including more-primitive material, old oceanic crust which first enters the more-primitive reservoir and is later entrained into mantle plumes with the more-primitive material, young oceanic crust which is directly entrained into mantle plumes without contacting the more-primitive reservoir, and depleted background mantle material. The result reconciles geochemical observation of multiple compositional components and varying ages of oceanic crust in the source of ocean-island basalts. Seismic studies have detected ultra-low velocity zones (ULVZs) in some localized regions on the CMB. Here, I present 3D thermochemical calculations to show that the distribution of ULVZs provides important information about their origin. ULVZs with a distinct composition tend to be located at the edges of LLSVPs, while ULVZs solely caused by partial melting tend to be located inboard from the edges of LLSVPs. This indicates that ULVZs at the edges of LLSVPs are best explained by distinct compositional heterogeneity, while ULVZs located insider of LLSVPs are better explained by partial melting. The results provide additional constraints for the origin of ULVZs.
ContributorsLi, Mingming (Author) / McNamara, Allen K (Thesis advisor) / Garnero, Edward J (Committee member) / Shim, Sang-Heon (Committee member) / Tyburczy, James (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2015
Description
Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to

Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle.

The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior.

Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than previous studies and by multiple transformation mechanisms at conditions as low as 1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along polysynthetic twin boundaries provides a mechanism for the inheritance of crystallographic preferred orientation from previously deformed enstatite-bearing rocks within subducting slabs.
ContributorsLockridge, Jeffrey Steven (Author) / Sharp, Thomas (Thesis advisor) / Arrowsmith, Ramon (Thesis advisor) / Shim, Sang-Heon (Committee member) / Garnero, Edward (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2015
157219-Thumbnail Image.png
Description
Oxygen fugacity (ƒO2) is a thermodynamic variable used to represent the redox state of a material or a system. It is equivalent to the partial pressure of oxygen in a particular environment corrected for the non-ideal behavior of the gas. ƒO2 is often used to indicate the potential for iron

Oxygen fugacity (ƒO2) is a thermodynamic variable used to represent the redox state of a material or a system. It is equivalent to the partial pressure of oxygen in a particular environment corrected for the non-ideal behavior of the gas. ƒO2 is often used to indicate the potential for iron to occur in a more oxidized or reduced state at a particular temperature and pressure in a natural system. Secondary ion mass spectrometry (SIMS) is a powerful analytical instrument that can be used to analyze elemental and isotopic compositional information about microscopic features within solid materials. SIMS analyses of the secondary ion energy distribution of semi-pure metals demonstrate that the energy spectrum of individual mass lines can provide information about alterations in its surface environment.

The application of high-resolution (see Appendix C) energy spectrum calibrations to natural ilmenite led to the investigation of zirconium (90Zr+) and niobium (93Nb+) as potential indicators of sample ƒO2. Energy spectrum measurements were performed on an array of ilmenite crystals from the earth’s upper mantle retrieved from kimberlites and from a reduced meteorite. In all studied materials, variability in the peak shape and width of the energy spectra has been correlated with inferred sample ƒO2. The best descriptor of this relationship is the full-width at half-maximum (FWHM; see Appendix C) of the energy spectra for each sample. It has been estimated that a 1eV change in the FWHM of 93Nb+ energy spectra is roughly equivalent to 1 log unit ƒO2. Simple estimates of precision suggest the FWHM values can be trusted to  1eV and sample ƒO2 can be predicted to ±1 log unit, assuming the temperature of formation is known.

The work of this thesis also explores the applicability of this technique beyond analysis of semi-pure metals and ilmenite crystals from kimberlites. This technique was applied to titanium oxides experimentally formed at known ƒO2 as well as an ilmenite crystal that showed compositional variations across the grain (i.e., core to rim chemical variations). Analyses of titanium oxides formed at known ƒO2 agree with the estimation that 1 eV change in the FWHM of 93Nb+ is equivalent to ~1 log unit ƒO2 (in all cases but one); this is also true for analyses of a natural ilmenite crystal with compositional variations across the grain.
ContributorsDillon, Sarah Marie (Author) / Hervig, Richard L (Thesis advisor) / Shim, Sang-Heon (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2019
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131526-Thumbnail Image.png
Description
Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes

Aquatic macroinvertebrates are important for many ecological processes within river ecosystems and, as a result, their abundance and diversity are considered indicators of water quality and ecosystem health. Macroinvertebrates can be classified into functional feeding groups (FFG) based on morphological-behavioral adaptations. FFG ratios can shift due to changes in normal disturbance patterns, such as changes in precipitation, and from human impact. Due to their increased sensitivity to environmental changes, it has become more important to protect and monitor aquatic and riparian communities in arid regions as climate change continues to intensify. Therefore, the diversity and richness of macroinvertebrate FFGs before and after monsoon and winter storm seasons were analyzed to determine the effect of flow-related disturbances. Ecosystem size was also considered, as watershed area has been shown to affect macroinvertebrate diversity. There was no strong support for flow-related disturbance or ecosystem size on macroinvertebrate diversity and richness. This may indicate a need to explore other parameters of macroinvertebrate community assembly. Establishing how disturbance affects aquatic macroinvertebrate communities will provide a key understanding as to what the stream communities will look like in the future, as anthropogenic impacts continue to affect more vulnerable ecosystems.
ContributorsSainz, Ruby (Author) / Sabo, John (Thesis director) / Grimm, Nancy (Committee member) / Lupoli, Christina (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131531-Thumbnail Image.png
Description
This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently

This study evaluates medical pluralism among 1.5 generation Indian American immigrants. 1.5 generation Indian Americans (N=16) were surveyed regarding their engagement in complementary and alternative medical systems (CAM), how immigration affected that, and reasons for and for not continuing the use of CAM. Results indicated most 1.5 Indian immigrants currently engage in CAM, given that their parents also engage in CAM. The top reasons respondents indicated continued engagement in CAM was that it has no side effects and is preventative. Reasons for not practicing CAM included feeling out of place, not living with parents or not believing in CAM. After immigration, most participants decreased or stopped their engagement in CAM. More women than men continued to practice CAM after immigration. From the results, it was concluded that CAM is still important to 1.5 generation Indian immigrants.
ContributorsMurugesh, Subhiksha (Author) / Stotts, Rhian (Thesis director) / Mubayi, Anuj (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05