Matching Items (25)
Filtering by

Clear all filters

129056-Thumbnail Image.png
Description

Background: Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces

Background: Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a function of object center of mass (CM) during whole-hand grasping.

Methods: Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object CM was changed by adding a mass at different locations at the base of the object. We measured forces and torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset to generate a compensatory moment to counteract the external moment caused by the added mass and to minimize object tilt.

Results: We found that CTS patients learned to generate a compensatory moment and minimized object roll to the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF) in coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces, and the net center of pressure on the finger side of the device at object lift onset and during object hold. In contrast, patients modulated only one of these DoFs (the net center of pressure) to object CM by modulating individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit tangential force distribution to object CM.

Conclusions: Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation task, it interfered with the modulation of specific grasp control variables. This phenomenon might be indicative of a lower degree of flexibility of the sensorimotor system in CTS to adapt to grasp task conditions.

ContributorsZhang, Wei (Author) / Johnston, Jamie A. (Author) / Ross, Mark A. (Author) / Coakley, Brandon J. (Author) / Gleason, Elizabeth A. (Author) / Dueck, Amylou C. (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2012-11-21
128742-Thumbnail Image.png
Description

Studies on anticipatory planning of object manipulation showed initial task failure (i.e., object roll) when visual object shape cues are incongruent with other visual cues, such as weight distribution/density (e.g., symmetrically shaped object with an asymmetrical density). This suggests that shape cues override density cues. However, these studies typically only

Studies on anticipatory planning of object manipulation showed initial task failure (i.e., object roll) when visual object shape cues are incongruent with other visual cues, such as weight distribution/density (e.g., symmetrically shaped object with an asymmetrical density). This suggests that shape cues override density cues. However, these studies typically only measured forces, with digit placement constrained. Recent evidence suggests that when digit placement is unconstrained, subjects modulate digit forces and placement. Thus, unconstrained digit placement might be modulated on initial trials (since it is an explicit process), but not forces (since it is an implicit process). We tested whether shape and density cues would differentially influence anticipatory planning of digit placement and forces during initial trials of a two-digit object manipulation task. Furthermore, we tested whether shape cues would override density cues when cues are incongruent. Subjects grasped and lifted an object with the aim of preventing roll. In Experiment 1, the object was symmetrically shaped, but with asymmetrical density (incongruent cues). In Experiment 2, the object was asymmetrical in shape and density (congruent cues). In Experiment 3, the object was asymmetrically shaped, but with symmetrical density (incongruent cues). Results showed differential modulation of digit placement and forces (modulation of load force but not placement), but only when shape and density cues were congruent. When shape and density cues were incongruent, we found collinear digit placement and symmetrical force sharing. This suggests that congruent and incongruent shape and density cues differentially influence anticipatory planning of digit forces and placement. Furthermore, shape cues do not always override density cues. A continuum of visual cues, such as those alluding to shape and density, need to be integrated.

ContributorsLee-Miller, Trevor (Author) / Marneweck, Michelle (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-21
128870-Thumbnail Image.png
Description

Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations

Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass distributions are specific to the body- and hand-reference frames in which they were learned.

ContributorsMarneweck, Michelle (Author) / Knelange, Elisabeth (Author) / Lee-Miller, Trevor (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-16
128862-Thumbnail Image.png
Description

Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the vertical distance between finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads

Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the vertical distance between finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same or opposite hand (“test” hand) after a 10-second delay without vision of the hands. The reference hand digits were passively placed non-collinearly so that the thumb was higher or lower than the index finger (dy = 30 or –30 mm, respectively) or collinearly (dy = 0 mm). Subjects reproduced reference hand dy by using a congruent or inverse test hand posture while exerting negligible digit forces onto a handle. We hypothesized that matching error (reference hand dy minus test hand dy) would be greater (a) for collinear than non-collinear dys, (b) when reference and test hand postures were not congruent, and (c) when subjects reproduced dy using the opposite hand. Our results confirmed our hypotheses. Under-estimation errors were produced when the postures of reference and test hand were not congruent, and when test hand was the opposite hand. These findings indicate that perceived finger pad distance is reproduced less accurately (1) with the opposite than the same hand and (2) when higher-level processing of the somatosensory feedback is required for non-congruent hand postures. We propose that erroneous sensing of finger pad distance, if not compensated for during contact and onset of manipulation, might lead to manipulation performance errors as digit forces have to be modulated to perceived digit placement.

ContributorsShibata, Daisuke (Author) / Choi, Jason (Author) / Laitano, Juan (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2013-06-06
128898-Thumbnail Image.png
Description

The delicate tuning of digit forces to object properties can be disrupted by a number of neurological and musculoskeletal diseases. One such condition is Carpal Tunnel Syndrome (CTS), a compression neuropathy of the median nerve that causes sensory and motor deficits in a subset of digits in the hand. Whereas

The delicate tuning of digit forces to object properties can be disrupted by a number of neurological and musculoskeletal diseases. One such condition is Carpal Tunnel Syndrome (CTS), a compression neuropathy of the median nerve that causes sensory and motor deficits in a subset of digits in the hand. Whereas the effects of CTS on median nerve physiology are well understood, the extent to which it affects whole-hand manipulation remains to be addressed. CTS affects only the lateral three and a half digits, which raises the question of how the central nervous system integrates sensory feedback from affected and unaffected digits to plan and execute whole-hand object manipulation. We addressed this question by asking CTS patients and healthy controls to grasp, lift, and hold a grip device (445, 545, or 745 g) for several consecutive trials. We found that CTS patients were able to successfully adapt grip force to object weight. However, multi-digit force coordination in patients was characterized by lower discrimination of force modulation to lighter object weights, higher across-trial digit force variability, the consistent use of excessively large digit forces across consecutive trials, and a lower ability to minimize net moments on the object. Importantly, the mechanical requirement of attaining equilibrium of forces and torques caused CTS patients to exert excessive forces at both CTS-affected digits and digits with intact sensorimotor capabilities. These findings suggest that CTS-induced deficits in tactile sensitivity interfere with the formation of accurate sensorimotor memories of previous manipulations. Consequently, CTS patients use compensatory strategies to maximize grasp stability at the expense of exerting consistently larger multi-digit forces than controls. These behavioral deficits might be particularly detrimental for tasks that require fine regulation of fingertip forces for manipulating light or fragile objects.

ContributorsZhang, Wei (Author) / Johnston, Jamie A. (Author) / Ross, Mark A. (Author) / Smith, Anthony A. (Author) / Coakley, Brandon J. (Author) / Gleason, Elizabeth A. (Author) / Dueck, Amylou C. (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-11-16
128897-Thumbnail Image.png
Description

Carpal tunnel syndrome (CTS) impairs sensation of a subset of digits. Although the effects of CTS on manipulation performed with CTS-affected digits have been studied using precision grip tasks, the extent to which CTS affects multi-digit force coordination has only recently been studied. Whole-hand manipulation studies have shown that CTS

Carpal tunnel syndrome (CTS) impairs sensation of a subset of digits. Although the effects of CTS on manipulation performed with CTS-affected digits have been studied using precision grip tasks, the extent to which CTS affects multi-digit force coordination has only recently been studied. Whole-hand manipulation studies have shown that CTS patients retain the ability to modulate multi-digit forces to object mass, mass distribution, and texture. However, CTS results in sensorimotor deficits relative to healthy controls, including significantly larger grip force and lower ability to balance the torques generated by the digits. Here we investigated the effects of CTS on multi-digit force modulation to object weight when manipulating an object with a variable number of fingers. We hypothesized that CTS patients would be able to modulate digit forces to object weight. However, as different grip types involve the exclusive use of CTS-affected digits (‘uniform’ grips) or a combination of CTS-affected and non-affected digits (‘mixed’ grips), we addressed the question of whether ‘mixed’ grips would reduce or worsen CTS-induced force coordination deficits. The former scenario would be due to adding digits with intact tactile feedback, whereas the latter scenario might occur due to a potentially greater challenge for the central nervous system of integrating ‘noisy’ and intact tactile feedback. CTS patients learned multi-digit force modulation to object weight regardless of grip type. Although controls exerted the same total grip force across all grip types, patients exerted significantly larger grip force than controls but only for manipulations with four and five digits. Importantly, this effect was due to CTS patients’ inability to change the finger force distribution when adding the ring and little fingers. These findings suggest that CTS primarily challenges sensorimotor integration processes for dexterous manipulation underlying the coordination of CTS-affected and non-affected digits.

ContributorsZhang, Wei (Author) / Johnston, Jamie A. (Author) / Ross, Mark A. (Author) / Sanniec, Kyle (Author) / Gleason, Elizabeth A. (Author) / Dueck, Amylou C. (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-01-10
128895-Thumbnail Image.png
Description

Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile

Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.

ContributorsWarren, Jay (Author) / Santello, Marco (Author) / Helms Tillery, Stephen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-03-25
128891-Thumbnail Image.png
Description

Anticipatory force planning during grasping is based on visual cues about the object’s physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not

Anticipatory force planning during grasping is based on visual cues about the object’s physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object’s center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object’s center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object’s CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.

ContributorsCraje, Celine (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-16
128709-Thumbnail Image.png
Description

Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1–50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term “ereptiospiration” is used here to

Pure coconut oil, lanolin, and acetaminophen were vaporized at rates of 1–50 mg/min, using a porous network exhibiting a temperature gradient from 5000 to 5500 K/mm, without incurring noticeable chemical changes due to combustion, oxidation, or other thermally-induced chemical structural changes. The newly coined term “ereptiospiration” is used here to describe this combination of thermal transpiration at high temperature gradients since the process can force the creation of thermal aerosols by rapid heating in a localized zone. Experimental data were generated for these materials using two different supports for metering the materials to the battery powered coil: namely, a stainless steel fiber bundle and a 3-D printed steel cartridge. Heating coconut oil, lanolin, or acetaminophen in a beaker to lower temperatures than those achieved at the surface of the coil showed noticeable and rapid degradation in the samples, while visual and olfactory observations for ereptiospiration showed no noticeable degradation in lanolin and coconut oil while HPLC chromatograms along with visual observation confirm that within the limit of detection, acetaminophen remains chemically unaltered by ereptiospiration.

ContributorsWoolley, Christine (Author) / Garcia, Antonio (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04-12
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09