Matching Items (3)
Filtering by

Clear all filters

128594-Thumbnail Image.png
Description

Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially

Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design.

ContributorsGarrison, Kathleen A. (Author) / Rogalsky, Corianne (Author) / Sheng, Tong (Author) / Liu, Brent (Author) / Damasio, Hanna (Author) / Winstein, Carolee J. (Author) / Aziz-Zadeh, Lisa S. (Author) / College of Health Solutions (Contributor)
Created2015-09-25
128584-Thumbnail Image.png
Description

The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's

The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

ContributorsLaCroix, Arianna (Author) / Diaz, Alvaro (Author) / Rogalsky, Corianne (Author) / College of Health Solutions (Contributor)
Created2015-08-11
128216-Thumbnail Image.png
Description

We tested the hypothesis that motor planning and programming of speech articulation and verbal short-term memory (vSTM) depend on partially overlapping networks of neural regions. We evaluated this proposal by testing 76 individuals with acute ischemic stroke for impairment in motor planning of speech articulation (apraxia of speech, AOS) and

We tested the hypothesis that motor planning and programming of speech articulation and verbal short-term memory (vSTM) depend on partially overlapping networks of neural regions. We evaluated this proposal by testing 76 individuals with acute ischemic stroke for impairment in motor planning of speech articulation (apraxia of speech, AOS) and vSTM in the first day of stroke, before the opportunity for recovery or reorganization of structure-function relationships. We also evaluated areas of both infarct and low blood flow that might have contributed to AOS or impaired vSTM in each person. We found that AOS was associated with tissue dysfunction in motor-related areas (posterior primary motor cortex, pars opercularis; premotor cortex, insula) and sensory-related areas (primary somatosensory cortex, secondary somatosensory cortex, parietal operculum/auditory cortex); while impaired vSTM was associated with primarily motor-related areas (pars opercularis and pars triangularis, premotor cortex, and primary motor cortex). These results are consistent with the hypothesis, also supported by functional imaging data, that both speech praxis and vSTM rely on partially overlapping networks of brain regions.

ContributorsHickok, Gregory (Author) / Rogalsky, Corianne (Author) / Chen, Rong (Author) / Herskovits, Edward H. (Author) / Townsley, Sarah (Author) / Hillis, Argye E. (Author) / College of Health Solutions (Contributor)
Created2014-08-25