Matching Items (517)
152672-Thumbnail Image.png
Description
Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the L.HI genome - Since this is a newly discovered cyanobacterium, its genome was not previously elucidated. Illumina sequencing, a type of next generation sequencing (NGS) technology was employed to sequence the genome. Unfortunately, the natural isolate contained other contaminating and potentially symbiotic bacterial populations. A novel bioinformatics strategy for separating DNA from contaminating bacterial populations from that of L.HI was devised which involves a combination of tetranucleotide frequency, %(G+C), BLAST analysis and gene annotation. 2) Structural elucidation of phycoerythrin - Phycoerythrin is the most important protein in the PBS assembly because it is one of the few light harvesting proteins which absorbs green light. The protein was crystallized and its structure solved to a resolution of 2Å. This protein contains two chemically distinct types of chromophores: phycourobilin and phycoerythrobilin. Energy transfer calculations indicate that there is unidirectional flow of energy from phycourobilin to phycoerythrobilin. Energy transfer time constants using Forster energy transfer theory have been found to be consistent with experimental data available in literature. 3) Effect of chromatic acclimation on photosystems - Chromatic acclimation is a phenomenon in which an organism modulates the ratio of PE/PC with change in light conditions. Our investigation in case of L.HI has revealed that the PE is expressed more in green light than PC in red light. This leads to unequal harvesting of light in these two states. Therefore, photosystem II expression is increased in red-light acclimatized cells coupled with an increase in number of PBS.
ContributorsPaul, Robin (Author) / Fromme, Petra (Thesis advisor) / Ros, Alexandra (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
149983-Thumbnail Image.png
Description
Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life

Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life while being composed of non-living matter. We have introduced a new paradigm of synthetic biology that melds the methods of in vitro evolution with the goals and philosophy of synthetic biology. The Family B proteins represent the first de novo evolved natively folded proteins to be developed with increasingly powerful tools of molecular evolution. These proteins are folded and functional, composed of the 20 canonical amino acids, and in many ways resemble natural proteins. However, their evolutionary history is quite different from natural proteins, as it did not involve a cellular environment. In this study, we examine the properties of DX, one of the Family B proteins that have been evolutionarily optimized for folding stability. Described in chapter 2 is an investigation into the primitive catalytic properties of DX, which seems to have evolved a serendipitous ATPase activity in addition to its selected ATP binding activity. In chapters 3 and 4 we express the DX gene in E. coli cells and observe massive changes in cell morphology, biochemistry, and life cycle. Exposure to DX activates several defense systems in E. coli, including filamentation, cytoplasmic segregation, and reversion to a viable but non-culturable state. We examined these phenotypes in detail and present a model that accounts for how DX causes such a rearrangement of the cell.
ContributorsStomel, Joshua (Author) / Chaput, John C (Thesis advisor) / Korch, Shaleen (Committee member) / Roberson, Robert (Committee member) / Ghirlanda, Gionvanna (Committee member) / Arizona State University (Publisher)
Created2011
149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
157372-Thumbnail Image.png
Description
Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in

Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in the literature as early as the 1940’s. However, nearly 80 years later, relatively few successful commercial microalgae installations exist and algae have not yet reached agricultural commodity status. This dissertation examines three major bottlenecks to commercial microalgae production including lack of an efficient and economical cultivation strategy, poor management of volatile waste nutrients, and costly harvesting and post processing strategies. A chapter is devoted to each of these three areas to gain a better understanding of each bottleneck as well as strategies for overcoming them.

The first chapter demonstrates the capability of two strains of Scenedesmus acutus to grow in ultra-high-density (>10 g L-1 dry weight biomass) cultures in flat panel photobioreactors for year-round production in the desert Southwest with record volumetric biomass productivity. The advantages and efficiency of high-density cultivation are discussed. The second chapter focuses on uptake and utilization of the volatile components of wastewater: ammonia and carbon dioxide. Scenedesmus acutus was cultured on wastewater from both municipal and agricultural origin and was shown to perform significantly better on flue gas as compared to commercial grade CO2 and just as well on waste nutrients as the commonly used BG-11 laboratory culture media, all while producing up to 50% lipids of the dry weight biomass suitable for use in biodiesel. The third chapter evaluates the feasibility of using gravity sedimentation for the harvesting of the difficult-to-separate Scenedesmus acutus green algae biomass followed by microfluidization to disrupt the cells. Lipid-extracted biomass was then studied as a fertilizer for plants and shown to have similar performance to a commercially available 4-6-6 fertilizer. Based on the work from these three chapters, a summary of modifications are suggested to help current and future microalgae companies be more competitive in the marketplace with traditional agricultural commodities.
ContributorsWray, Joshua (Author) / Dempster, Thomas (Thesis advisor) / Roberson, Robert (Thesis advisor) / Bingham, Scott (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2019
156721-Thumbnail Image.png
Description
Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released

Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released by heterotrophic bacteria within the soil in the absence of O2. To better understand how neighboring bacterial communities can influence methanogenesis, the isolation and physiological characterization of two novel isolates, one Methanoarchaeal isolate and one Acidobacterium isolate identified as QU12MR and R28S, respectively, were targeted in this present study. Co-culture growth in varying temperatures of the QU12MR isolate paired with an isolated Clostridium species labeled R32Q and the R28S isolate were also investigated for possible influences in CH4 production. Phylogenetic analysis of strain QU12MR was observed as a member of genus Methanobacterium sharing 98% identity similar to M. arcticum strain M2 and 99% identity similar to M. uliginosum strain P2St. Phylogenetic analysis of strain R28S was associated with genus Acidicapsa from the phylum Acidobacteria, sharing 97% identity to A. acidisoli strain SK-11 and 96% identity similarity to Occallatibacter savannae strain A2-1c. Bacterial co-culture growth and archaeal CH4 production was present in the five temperature ranges tested. However, bacterial growth and archaeal CH4 production was less than what was observed in pure culture analysis after 21 days of incubation.
ContributorsRamirez, Zeni Elizia (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Roberson, Robert (Thesis advisor) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2018
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133376-Thumbnail Image.png
Description
Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the

Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the law are slow to catch up with scientific evident. Although breastfeeding is supported, working women do not have the option of breastfeeding without consequences. For example, in 2003, Kirstie Marshall, a then member of parliament in Australia was ejected from the lower house chamber on February 23, for breastfeeding her baby [3]. According to standing order 30 at the time, "Unless by order of the House, no Member of this House shall presume to bring any stranger into any part of the House appropriated to the Members of this House while the House, or a Committee of the whole House, is sitting" [3]. The rules did not specify the age of strangers, so the then 11-day-old baby, Charlotte Louise and her mother were shown the exit door of parliament. She had to choose between being present at times of major discussions or leaving the house to breastfeed her child, she chose to leave. More recent statistics show that developed nations like the US and Australia which also have high rates of women employment had low rates of breastfeeding. This might mean that workplace policies do not favor breastfeeding or expressing milk at work. Fortunately, laws have since been introduced in both the United States and Australia that support breastfeeding at the workplace. The next step would be to access how these laws affect breastfeeding statistics and how variation between these two countries like the paid parental leave in Australia (which is not present in all US states) would affect these numbers.
ContributorsSakala, Lydia (Author) / Alison, Alison (Thesis director) / Reddy, Swapna (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131532-Thumbnail Image.png
Description
Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at

Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at the relationship between Time Restricted Feeding (TRF), a method of intermittent fasting. TRF is something that can be easily adapted into an individual’s lifestyle and has been shown to have multiple advantages. This 8-week study began with 23 enrolled participants, but due to COVID-19 only 11 participants could be tested for cognition and blood ketone levels after week 4. All participants had similar ranges of weight, height, age, BMI, hip, and waist measurements at baseline. Moreover, these demographic variables were not related to ketone levels or cognition. The data indicate that ketone bodies increased in participants practicing TRF and that the increase in ketone bodies in the blood, specifically β-hydroxybutyrate was strongly correlated to increased cognitive function. This is consistent with theories that elevated ketone levels allowed for early hunter-gather communities and other mammals to survive prolonged periods of nutrient deprivation while keeping high cognitive function.
ContributorsTaha, Basel Mahmoud (Author) / Johnston, Carol (Thesis director) / Karen, Sweazea (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133885-Thumbnail Image.png
Description
The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in

The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in anesthetized pigs. This experiment was based upon ultrasound science and technology, and thus some practical experience with conventional (B-mode) and Doppler ultrasound was achieved as well. The results of bench and experimental animal studies indicated proper functionality of the AAC for identification and spatial navigation of its tip with color Doppler ultrasound imaging.
ContributorsShamsa, Kayvan (Author) / Tyler, William (Thesis director) / Belohlavek, Marek (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133889-Thumbnail Image.png
Description
The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of

The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of focus in accordance with available literature: the fans and their characteristics, the design of the game itself, and the relationship between fans and the game's developer. This investigation was conducted by first examining existing literature surrounding eSports fans, then collecting public domain data such as Reddit posts, forum posts, and YouTube videos, and last by studying interviews with developers and players. With this thesis, I apply a fan studies approach to eSports by creating a series of indicators based in each of the three focus areas which can be utilized as a systematic method of evaluating an eSport's popularity and growth.
ContributorsHilliker, Noah Henry (Author) / Ingram-Waters, Mary (Thesis director) / Schmidt, Peter (Committee member) / Anderson, Sky (Committee member) / School of Molecular Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05