Matching Items (3)
Filtering by

Clear all filters

Description

The inverse problem associated with electrochemical impedance spectroscopy requiring the solution of a Fredholm integral equation of the first kind is considered. If the underlying physical model is not clearly determined, the inverse problem needs to be solved using a regularized linear least squares problem that is obtained from the

The inverse problem associated with electrochemical impedance spectroscopy requiring the solution of a Fredholm integral equation of the first kind is considered. If the underlying physical model is not clearly determined, the inverse problem needs to be solved using a regularized linear least squares problem that is obtained from the discretization of the integral equation. For this system, it is shown that the model error can be made negligible by a change of variables and by extending the effective range of quadrature. This change of variables serves as a right preconditioner that significantly improves the condition of the system. Still, to obtain feasible solutions the additional constraint of non-negativity is required. Simulations with artificial, but realistic, data demonstrate that the use of non-negatively constrained least squares with a smoothing norm provides higher quality solutions than those obtained without the non-negative constraint. Using higher-order smoothing norms also reduces the error in the solutions. The L-curve and residual periodogram parameter choice criteria, which are used for parameter choice with regularized linear least squares, are successfully adapted to be used for the non-negatively constrained Tikhonov least squares problem. Although these results have been verified within the context of the analysis of electrochemical impedance spectroscopy, there is no reason to suppose that they would not be relevant within the broader framework of solving Fredholm integral equations for other applications.

ContributorsHansen, Jakob (Author) / Hogue, Jarom (Author) / Sander, Grant (Author) / Renaut, Rosemary (Author) / Popat, Sudeep (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-15
129269-Thumbnail Image.png
Description

The χ[superscript 2] principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3-D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated

The χ[superscript 2] principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3-D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated using the standard form transformation. Solution of the resulting Tikhonov functional is found efficiently using the singular value decomposition of the transformed model matrix, which also provides for efficient determination of the updated regularization parameter each step. Experimental 3-D simulations using synthetic data of a dipping dike and a cube anomaly demonstrate that both parameter estimation techniques outperform the Morozov discrepancy principle for determining the regularization parameter. Smaller relative errors of the reconstructed models are obtained with fewer iterations. Data acquired over the Gotvand dam site in the south-west of Iran are used to validate use of the methods for inversion of practical data and provide good estimates of anomalous structures within the subsurface.

ContributorsVatankhah, Saeed (Author) / Ardestani, Vahid E. (Author) / Renaut, Rosemary (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-01
128965-Thumbnail Image.png
Description

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub{Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to nd a subspace approximation to the full problem. Determination of the regularization, parameter for the projected problem by unbiased predictive risk

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub{Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to nd a subspace approximation to the full problem. Determination of the regularization, parameter for the projected problem by unbiased predictive risk estimation, generalized cross validation, and discrepancy principle techniques is investigated. It is shown that the regularized parameter obtained by the unbiased predictive risk estimator can provide a good estimate which can be used for a full problem that is moderately to severely ill-posed. A similar analysis provides the weight parameter for the weighted generalized cross validation such that the approach is also useful in these cases, and also explains why the generalized cross validation without weighting is not always useful. All results are independent of whether systems are over- or underdetermined. Numerical simulations for standard one-dimensional test problems and two- dimensional data, for both image restoration and tomographic image reconstruction, support the analysis and validate the techniques. The size of the projected problem is found using an extension of a noise revealing function for the projected problem [I. Hn etynkov a, M. Ple singer, and Z. Strako s, BIT Numer. Math., 49 (2009), pp. 669{696]. Furthermore, an iteratively reweighted regularization approach for edge preserving regularization is extended for projected systems, providing stabilization of the solutions of the projected systems and reducing dependence on the determination of the size of the projected subspace.

ContributorsRenaut, Rosemary (Author)
Created2017-03-08