Matching Items (56)
154257-Thumbnail Image.png
Description
Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can

Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out on typical types of TiO2 based photocatalysts. The observed structure changes during the reaction are correlated with the H2 production rate for structure-property relationships.

A surface disordering was observed in situ when well-defined anatase TiO2 rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside the environmental TEM. The disordering is believed to be related to high density of hydroxyl groups formed on surface oxygen vacancies during water splitting reactions.

Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production rate drops during the reaction. Particle size growth during reaction was discovered with Z-contrast images. The particle size growth is believed to be a photo-electro-chemical Ostwald ripening.

Characterizations were also carried out on a more complicated photocatalyst system: Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by OH• radicals which are intermediate products of H2O oxidation. The mechanism that the OH• radicals leak into the cores through cracks on NiO shells is more supported by experiments.

Overall this research has done a comprehensive ex situ and in situ TEM characterizations following some typical TiO2 based photocatalysts during reactions. This research has shown the technique availability to study photocatalyst inside TEM in photocatalytic conditions. It also demonstrates the importance to follow structure changes of materials during reactions in understanding deactivation mechanisms.
ContributorsZhang, Liuxian (Author) / Crozier, Peter (Thesis advisor) / Smith, David (Committee member) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2015
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014
153758-Thumbnail Image.png
Description
GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points:

First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band bending was measured after different surface treatments of GaN and AlGaN to determine the effects of specific surface states on the electronic state configuration. Results showed oxygen-terminated N-face GaN, Ga-face GaN, and Ga-face Al0.25Ga0.75N surface were characterized by similar band bending regardless of the polarization bound charge, suggesting a Fermi level pinning state ~0.4-0.8 eV below the conduction band minimum. On oxygen-free Ga-face GaN, Al0.15Ga0.85N, Al0.25Ga0.75N, and Al0.35Ga0.65N, band bending increased slightly with aluminum content and thus did not exhibit the same pinning behavior; however, there was still significant compensating charge on these surfaces (~1013 charges/cm2). This charge is likely related to nitrogen vacancies and/or gallium dangling bonds.

In addition, this wozrk investigated the interface electronic state configuration of dielectric/GaN and AlGaN interfaces with regards to deposition conditions and aluminum content. Specifically, oxygen plasma-enhanced atomic layer deposited (PEALD) was used to deposit SiO2. Growth temperature was shown to influence the film quality, where room temperature deposition produced the highest quality films in terms of electrical breakdown. In addition, the valence band offsets (VBOs) appeared to decrease with the deposition temperature, which likely related to an electric field across the Ga2O3 interfacial layer. VBOs were also determined with respect to aluminum content at the PEALD-SiO2/AlxGa1-xN interface, giving 3.0, 2.9, 2.9, and 2.8 eV for 0%, 15%, 25%, and 35% aluminum content, respectively—with corresponding conduction band offsets of 2.5, 2.2, 1.9, and 1.8 eV. This suggests the largest difference manifests in the conduction band, which is in agreement with the charge neutrality level model.
ContributorsEller, Brianna (Author) / Nemanich, Robert J (Thesis advisor) / Chowdhury, Srabanti (Committee member) / McCartney, Martha (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
155461-Thumbnail Image.png
Description
Zinc oxide nanowires ( NWs) have broad applications in various fields such as nanoelectronics, optoelectronics, piezoelectric nanogenerators, chemical/biological sensors, and heterogeneous catalysis. To meet the requirements for broader applications, the growth of high-quality ZnO NWs and functionalization of ZnO NWs are critical. In this work, specific types of functionalized ZnO

Zinc oxide nanowires ( NWs) have broad applications in various fields such as nanoelectronics, optoelectronics, piezoelectric nanogenerators, chemical/biological sensors, and heterogeneous catalysis. To meet the requirements for broader applications, the growth of high-quality ZnO NWs and functionalization of ZnO NWs are critical. In this work, specific types of functionalized ZnO NWs have been synthesized and correlations between specific structures and properties have been investigated. Deposition of δ-Bi2O3 (narrow band gap) epilayers onto ZnO (wide band gap) NWs improves the absorption efficiency of the visible light spectrum by 70%. Furthermore, the deposited δ-Bi2O3 grows selectively and epitaxially on the {11-20} but not on the {10-10} facets of the ZnO NWs. The selective epitaxial deposition and the interfacial structure were thoroughly investigated. The morphology and structure of the Bi2O3/ZnO nanocomposites can be tuned by controlling the deposition conditions.

Various deposition methods, both physical and chemical, were used to functionalize the ZnO NWs with metal or alloy nanoparticles (NPs) for catalytic transformations of important molecules which are relevant to energy and environment. Cu and PdZn NPs were epitaxially grown on ZnO NWs to make them resistant to sintering at elevated temperatures and thus improved the stability of such catalytic systems for methanol steam reforming (MSR) to produce hydrogen. A series of Pd/ZnO catalysts with different Pd loadings were synthesized and tested for MSR reaction. The CO selectivity was found to be strongly dependent on the size of the Pd: Both PdZn alloy and single Pd atoms yield low CO selectivity while Pd clusters give the highest CO selectivity.

By dispersing single Pd atoms onto ZnO NWs, Pd1/ZnO single-atom catalysts (SACs) was synthesized and their catalytic performance was evaluated for selected catalytic reactions. The experimental results show that the Pd1/ZnO SAC is active for CO oxidation and MSR but is not desirable other reactions. We further synthesized ZnO NWs supported noble metal (M1/ZnO; M=Rh, Pd, Pt, Ir) SACs and studied their catalytic performances for CO oxidation. The catalytic test data shows that all the fabricated noble metal SACs are active for CO oxidation but their activity are significantly different. Structure-performance relationships were investigated.
ContributorsXu, Jia, Ph.D (Author) / Liu, Jingyue (Thesis advisor) / Smith, David (Committee member) / Chan, Candace (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2017
158095-Thumbnail Image.png
Description
A model of self-heating is incorporated into a Cellular Monte Carlo (CMC) particle-based device simulator through the solution of an energy balance equation (EBE) for phonons. The EBE self-consistently couples charge and heat transport in the simulation through a novel approach to computing the heat generation rate in

A model of self-heating is incorporated into a Cellular Monte Carlo (CMC) particle-based device simulator through the solution of an energy balance equation (EBE) for phonons. The EBE self-consistently couples charge and heat transport in the simulation through a novel approach to computing the heat generation rate in the device under study. First, the moments of the Boltzmann Transport equation (BTE) are discussed, and subsequently the EBE of for phonons is derived. Subsequently, several tests are performed to verify the applicability and accuracy of a nonlinear iterative method for the solution of the EBE in the presence of convective boundary conditions, as compared to a finite element analysis solver as well as using the Kirchhoff transformation. The coupled electrothermal characterization of a GaN/AlGaN high electron mobility transistor (HEMT) is then performed, and the effects of non-ideal interfaces and boundary conditions are studied.



The proposed thermal model is then applied to a novel $\Pi$-gate architecture which has been suggested to reduce hot electron generation in the device, compared to the conventional T-gate. Additionally, small signal ac simulations are performed for the determination of cutoff frequencies using the thermal model as well.

Finally, further extensions of the CMC algorithm used in this work are discussed, including 1) higher-order moments of the phonon BTE, 2) coupling to phonon Monte Carlo simulations, and 3) application to other large-bandgap, and therefore high-power, materials such as diamond.
ContributorsMerrill, Ky (Author) / Saraniti, Marco (Thesis advisor) / Goodnick, Stephen (Committee member) / Smith, David (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2020
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
129533-Thumbnail Image.png
Description

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge2H6 and deuterated stannane SnD4. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge3H8, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge4H10 as the Ge source. The photoluminescence intensity from Ge1-y Sny /Ge films is expected to increase relative to Ge1-y Sny /Si due to the less defected interface with the virtual substrate. However, while Ge1-y Sny /Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge1-y Sny /Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge1-y Sny /Ge makes it possible to approach film thicknesses of about 1  μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge1-y Sny /Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si1-x Gex /Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond–cubic lattice.

ContributorsSenaratne, Charutha Lasitha (Author) / Gallagher, J. D. (Author) / Jiang, Liying (Author) / Aoki, Toshihiro (Author) / Smith, David (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-10-07
129462-Thumbnail Image.png
Description

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place.

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place. We find that, for a multiple-relation network, a layer exists that dominantly determines the controllability of the whole network and, for a multiple-layer network, a small fraction of the interconnections can enhance the controllability remarkably. Our theory is generally applicable to other types of multiplex networks as well, leading to significant insights into the control of complex network systems with diverse structures and interacting patterns.

ContributorsYuan, Zhengzhong (Author) / Zhao, Chen (Author) / Wang, Wen-Xu (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-24
129393-Thumbnail Image.png
Description

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon”

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon” material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

ContributorsBuczkowski, D. L. (Author) / Wyrick, D.Y. (Author) / Toplis, M. (Author) / Yingst, R. A. (Author) / Williams, David (Author) / Garry, W. B. (Author) / Mest, S. (Author) / Kneissl, T. (Author) / Scully, J. E. C. (Author) / Nathues, A. (Author) / De Sanctis, M. C. (Author) / Le Corre, L. (Author) / Reddy, V. (Author) / Hoffmann, M. (Author) / Ammannito, E. (Author) / Frigeri, A. (Author) / Tosi, F. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Raymond, C. A. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-14