Matching Items (3)
Filtering by

Clear all filters

141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
129392-Thumbnail Image.png
Description

In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load.

In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load. We have also used macroscopic population dynamic models to design enzyme-inspired stochastic control policies that allocate a robotic swarm around multiple boundaries in a way that is robust to environmental variations. Here, we build on this prior work to synthesize stochastic robot attachment–detachment policies for tasks in which a robotic swarm must achieve non-uniform spatial distributions around multiple loads and transport them at a constant velocity. Three methods are presented for designing robot control policies that replicate the steady-state distributions, transient dynamics, and fluxes between states that we have observed in ant populations during group retrieval. The equilibrium population matching method can be used to achieve a desired transport team composition as quickly as possible; the transient matching method can control the transient population dynamics of the team while driving it to the desired composition; and the rate matching method regulates the rates at which robots join and leave a load during transport. We validate our model predictions in an agent-based simulation, verify that each controller design method produces successful transport of a load at a regulated velocity, and compare the advantages and disadvantages of each method.

ContributorsWilson, Sean (Author) / Pavlic, Theodore (Author) / Kumar, Ganesh (Author) / Buffin, Aurelie (Author) / Pratt, Stephen (Author) / Berman, Spring (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129670-Thumbnail Image.png
Description

Many ants rely on both visual cues and self-generated chemical signals for navigation, but their relative importance varies across species and context. We evaluated the roles of both modalities during colony emigration by Temnothorax rugatulus. Colonies were induced to move from an old nest in the center of an arena

Many ants rely on both visual cues and self-generated chemical signals for navigation, but their relative importance varies across species and context. We evaluated the roles of both modalities during colony emigration by Temnothorax rugatulus. Colonies were induced to move from an old nest in the center of an arena to a new nest at the arena edge. In the midst of the emigration the arena floor was rotated 60 degrees around the old nest entrance, thus displacing any substrate-bound odor cues while leaving visual cues unchanged. This manipulation had no effect on orientation, suggesting little influence of substrate cues on navigation. When this rotation was accompanied by the blocking of most visual cues, the ants became highly disoriented, suggesting that they did not fall back on substrate cues even when deprived of visual information. Finally, when the substrate was left in place but the visual surround was rotated, the ants' subsequent headings were strongly rotated in the same direction, showing a clear role for visual navigation. Combined with earlier studies, these results suggest that chemical signals deposited by Temnothorax ants serve more for marking of familiar territory than for orientation. The ants instead navigate visually, showing the importance of this modality even for species with small eyes and coarse visual acuity.

ContributorsBowens, Sean (Author) / Glatt, Daniel P. (Author) / Pratt, Stephen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-08-30