Matching Items (2)
156942-Thumbnail Image.png
Description
Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement

Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement released by the North American Menopause Society, HT is not currently advised for use as cognitive therapy in healthy, menopausal women, given that the data so far from existing clinical studies are not yet definitive. Indeed, the delivery of E2 treatment can be optimized to yield more consistent results on cognitive function, particularly considering that exogenously administered E2 gets rapidly metabolized and cleared from the body. Further, E2-containing HT must include a progestogen if prescribed to women with a uterus to oppose its undesired uterine stimulating effects, such as increased endometrial hyperplasia and cancer risks. Studies have shown that the addition of a progestogen to E2 treatment can attenuate the effects of E2 on cognition and brain variables associated with cognitive function. Thus, a brain-specific delivery platform of E2 treatment that would minimize the hormone’s effects in the periphery while maintaining the beneficial cognitive effects is desirable. To achieve this goal, my dissertation work bridged two distinct scientific fields – behavioral neuroendocrinology and polymeric drug delivery – with the overarching aim of targeting the delivery of E2 to the brain to achieve maximal cognitively-beneficial effects with minimal undesired uterine stimulation. This aim was addressed via three distinct delivery strategies: 1) combining E2 with a cognitively-beneficial progestogen, 2) encapsulating E2 in polymeric nanoparticles, and 3) solubilizing E2 using cyclodextrins for intranasal administration. Findings revealed that although all E2-containing treatments increased uterine horn weights, a marker of uterine stimulation, in middle-aged ovariectomized rats, some E2 treatment formulations yielded memory improvements, others were neutral in their effects on memory, and some impaired memory. Together, data from this dissertation set the stage for targeted E2 delivery research to optimize the cognitive therapeutic effects of E2 in the context of menopause while minimizing peripheral burden, leading to translationally relevant clinical implications for women’s health.
ContributorsPrakapenka, Alesia (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Stabenfeldt, Sarah (Committee member) / Sirianni, Rachael (Committee member) / Arizona State University (Publisher)
Created2018
135025-Thumbnail Image.png
Description
Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when

Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when taken in combination, are beneficial or harmful to cognition. This is a critically important question given that these hormones are most often given in combination versus separately. This thesis is composed of two studies examining the cognitive effects of E2 and Levo using a rat model of surgical menopause. Study 1 assessed how the dose of E2 treatment in rats impacted cognitive performance, and found that low dose E2 enhanced working memory performance. Next, based on the results from Study 1, Study 2 used low dose E2 in combination with different doses of Levo to examine the cognitive effects of several E2 to Levo ratio combinations. The results from Study 2 demonstrated that the combination of low dose E2 with a high dose of Levo at a 1:2 ratio impaired cognition, and that the ratio currently used in HT, 3:1, may also negatively impact cognition. Indeed, there was a dose response effect indicating that working and reference memory performance was incrementally impaired as Levo dose increased. The findings in this thesis suggest that the E2 plus Levo combination is likely not neutral for cognitive function, and prompts further evaluation in menopausal women, as well as drug discovery research to optimize HT using highly controlled preclinical models.
ContributorsBerns-Leone, Claire Elizabeth (Co-author) / Prakapenka, Alesia (Co-author) / Pena, Veronica (Co-author) / Northup-Smith, Steven (Co-author) / Melikian, Ryan (Co-author) / Ladwig, Ducileia (Co-author) / Patel, Shruti (Co-author) / Croft, Corissa (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12