Matching Items (74)
Filtering by

Clear all filters

128233-Thumbnail Image.png
Description

To achieve water resource sustainability in the water-limited southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basinwise streamflows. In Arizona, the Four

To achieve water resource sustainability in the water-limited southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basinwise streamflows. In Arizona, the Four Forest Restoration Initiative (4FRI) is being developed with the goal of restoring 2.4 million acres of ponderosa pine along the Mogollon Rim. Using the physically based, spatially distributed triangulated irregular network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) model, we examine the potential impacts of the 4FRI on the hydrology of Tonto Creek, a basin in the Verde–Tonto–Salt (VTS) system, which provides much of the water supply for the Phoenix metropolitan area. Long-term (20-year) simulations indicate that forest removal can trigger significant shifts in the spatiotemporal patterns of various hydrological components, causing increases in net radiation, surface temperature, wind speed, soil evaporation, groundwater recharge and runoff, at the expense of reductions in interception and shading, transpiration, vadose zone moisture and snow water equivalent, with south-facing slopes being more susceptible to enhanced atmospheric losses. The net effect will likely be increases in mean and maximum streamflow, particularly during El Niño events and the winter months, and chiefly for those scenarios in which soil hydraulic conductivity has been significantly reduced due to thinning operations. In this particular climate, forest thinning can lead to net loss of surface water storage by vegetation and snowpack, increasing the vulnerability of ecosystems and populations to larger and more frequent hydrologic extreme conditions on these semi-arid systems.

ContributorsMoreno, Hernan A. (Author) / Gupta, Hoshin V. (Author) / White, Dave (Author) / Samspon, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-03-29
128717-Thumbnail Image.png
Description

Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for

Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC). DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.

ContributorsLarson, Kelli (Author) / White, Dave (Author) / Gober, Patricia (Author) / Wutich, Amber (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-11-04
141478-Thumbnail Image.png
Description

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

ContributorsWutich, Amber (Author) / White, A. C. (Author) / White, Dave (Author) / Larson, Kelli (Author) / Brewis Slade, Alexandra (Author) / Roberts, Christine (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-01-13
131034-Thumbnail Image.png
Description
Intensive global animal agricultural practices have proved to be a cause for concern, resulting, in part, from consumer preferences and an increasing global demand for protein, especially meat. Countries like Argentina, contribute to Greenhouse Gas emissions substantially through their livestock sector. Improved resource management can help to promote sustainable agriculture

Intensive global animal agricultural practices have proved to be a cause for concern, resulting, in part, from consumer preferences and an increasing global demand for protein, especially meat. Countries like Argentina, contribute to Greenhouse Gas emissions substantially through their livestock sector. Improved resource management can help to promote sustainable agriculture by reducing the amount of water and energy used to produce livestock, and improve livestock practices in order to reduce GHG emissions. The integration of resource management between food, energy, and water systems can help to decrease livestock-based emissions, through efficiency improvements targeted towards animal agricultural practices. This paper can act as a reference for other researchers studying the FEW nexus, to increase their understanding of how to improve coordination across water, energy, and agricultural sectors by using Argentina’s livestock sector as an example. Furthermore, policy and decision makers in Argentina can use information about FEW systems to make informed decisions about the allocation and prioritization of integrated management between food, energy, and water sectors, to help them implement integrated mitigation strategies within their livestock sector to help reduce GHG emissions.
ContributorsGregorio, Gisselle Marie (Author) / White, Dave (Thesis director) / Eakin, Hallie (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12