Matching Items (43)
154966-Thumbnail Image.png
Description
With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of

With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of transit trips, there is a lack of understanding on this topic. This research aims to comprehensively evaluate the life cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is evaluated by using a comprehensive life cycle assessment combined with regional household travel survey data to evaluate first-last mile trip impacts in multimodal transit focusing on automobile trips accessing or egressing transit. First and last mile automobile trips were found to increase total multimodal transit trip emissions by 2 to 12 times (most extreme cases were carbon monoxide and volatile organic compounds). High amounts of coal-fired energy generation can cause electric propelled rail trips with automobile access or egress to have similar or more emissions (commonly greenhouse gases, sulfur dioxide, and mono-nitrogen oxides) than competing automobile trips, however, most criteria air pollutants occur remotely. Methods to reduce first-last mile impacts depend on the characteristics of the transit systems and may include promoting first-last mile carpooling, adjusting station parking pricing and availability, and increased emphasis on walking and biking paths in areas with low access-egress trip distances.
ContributorsHoehne, Christopher G (Author) / Chester, Mikhail V (Thesis advisor) / Salon, Deborah (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016
149462-Thumbnail Image.png
Description
Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults

Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults in the household using activity-based microsimulation tools. It is conceivable that most of the children are largely dependent on adults for their activity engagement and travel needs and hence would have considerable influence on the activity-travel schedules of adult members in the household. In this context, a detailed comparison of various activity-travel characteristics of adults in households with and without children is made using the National Household Travel Survey (NHTS) data. The analysis is used to quantify and decipher the nature of the impact of activities of children on the daily activity-travel patterns of adults. It is found that adults in households with children make a significantly higher proportion of high occupancy vehicle (HOV) trips and lower proportion of single occupancy vehicle (SOV) trips when compared to those in households without children. They also engage in more serve passenger activities and fewer personal business, shopping and social activities. A framework for modeling activities and travel of dependent children is proposed. The framework consists of six sub-models to simulate the choice of going to school/pre-school on a travel day, the dependency status of the child, the activity type, the destination, the activity duration, and the joint activity engagement with an accompanying adult. Econometric formulations such as binary probit and multinomial logit are used to obtain behaviorally intuitive models that predict children's activity skeletons. The model framework is tested using a 5% sample of a synthetic population of children for Maricopa County, Arizona and the resulting patterns are validated against those found in NHTS data. Microsimulation of these dependencies of children can be used to constrain the adult daily activity schedules. The deployment of this framework prior to the simulation of adult non-mandatory activities is expected to significantly enhance the representation of the interactions between children and adults in activity-based microsimulation models.
ContributorsSana, Bhargava (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2010
135785-Thumbnail Image.png
Description
Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which

Recurring incidents between pedestrians, bicycles, and vehicles at the intersection of Rural Road and Spence Avenue led to a team of students conducting their own investigation into the current conditions and analyzing a handful of alternatives. An extension of an industry-standard technique was used to build a control case which alternatives would be compared to. Four alternatives were identified, and the two that could be modeled in simulation software were both found to be technically feasible in the preliminary analysis.
ContributorsFellows, Christopher Lee (Author) / Lou, Yingyan (Thesis director) / Zhou, Xuesong (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
127869-Thumbnail Image.png
Description

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0-1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.

ContributorsLiu, Jiangtao (Author) / Kang, Jee Eun (Author) / Zhou, Xuesong (Author) / Pendyala, Ram (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-06-15
168331-Thumbnail Image.png
Description
To reduce the environmental burden of transport, previous studies have resorted on solutions that accentuate towards techno-economical pathways. However, there is growing evidence that transport behaviors, lifestyle choices, and the role of individuals' attitudes/perceptions are considered influential factors in shaping households’ engagement with sustainable technologies in the face of environmental

To reduce the environmental burden of transport, previous studies have resorted on solutions that accentuate towards techno-economical pathways. However, there is growing evidence that transport behaviors, lifestyle choices, and the role of individuals' attitudes/perceptions are considered influential factors in shaping households’ engagement with sustainable technologies in the face of environmental crises. The objective of this dissertation is to develop multidimensional econometric model systems to explore complex relationships that can help us understand travel behaviors' implications for transport and household energy use. To this end, the second chapter of this dissertation utilizes the latent segmentation approach to quantify and unravel the relationship between attitudes and behaviors while recognizing the presence of unobserved heterogeneity in the population. It was found that two-thirds of the population fall in the causal structure where behavioral experiences are shaping attitudes, while for one-third attitudes are shaping behaviors. The findings have implications on the energy-behavior modeling paradigm and forecasting household energy use. Building on chapter two, the third chapter develops an integrated modeling framework to explore the factors that influence the adoption of on-demand mobility services and electric vehicle ownership while placing special emphasis on attitudes/perceptions. Results indicated that attitudes and values significantly affect the use of on-demand transportation services and electric vehicle ownership, suggesting that information campaigns and free trials/demonstrations would help advance towards the sustainable transportation future and decarbonize the transport sector. The integrated modeling framework is enhanced, in chapter four, to explore the interrelationship between transport and residential energy consumption. The findings indicated the existence of small but significant net complimentary relationships between transport and residential energy consumption. Additionally, the modeling framework enabled the comparison of energy consumption patterns across market segments. The resulting integrated transport and residential energy consumption model system is utilized, in chapter fifth, to shed light on the overall household energy footprint implications of shifting vehicle/fuel type choices. Results indicated that electric vehicles are driven as much as gasoline vehicles are. Interestingly, while an increase in residential energy consumption was observed with the wide-scale adoption of electric vehicles, the total household energy use decreased, indicating benefits associated with transportation electrification.
ContributorsSharda, Shivam (Author) / Pendyala, Ram M. (Thesis advisor) / Khoeini, Sara (Committee member) / Grimm, Kevin J. (Committee member) / Chester, Mikhail V. (Committee member) / Garikapati, Venu M. (Committee member) / Arizona State University (Publisher)
Created2021
189319-Thumbnail Image.png
Description
The primary objective of this dissertation is to advance the existing empirical literature on the relationship between transportation and quality of life, with a specific focus on wellbeing indicators and their applicability in the transportation sector. To achieve this, the dissertation is structured around four primary areas of inquiry. Firstly,

The primary objective of this dissertation is to advance the existing empirical literature on the relationship between transportation and quality of life, with a specific focus on wellbeing indicators and their applicability in the transportation sector. To achieve this, the dissertation is structured around four primary areas of inquiry. Firstly, it introduces a subjective wellbeing scoring method that generates episode-level wellbeing scores, which can be aggregated to produce daily person-level wellbeing scores. This method can be utilized as a post-processor of activity-based travel demand model outputs to assess equity implications in various planning scenarios. Secondly, the dissertation examines the intricate relationships between mobility poverty, time poverty, and subjective wellbeing. It compares the rates of time poverty and zero-trip making among different socio-demographic groups and evaluates their alignment with subjective wellbeing. Thirdly, this research investigates the association between automobile use and satisfaction with daily travel routines (thus, wellbeing). This analysis aims to provide an understanding of why automobile use remains the primary mode of transportation, despite attempts to shift towards alternative modes of transportation. The fourth area of investigation focuses on the wellbeing impacts of the COVID-19 pandemic. Specifically, the chapter examines the resurgence in travel and discretionary out-of-home activities, as well as the slow return of workers to workplaces by using the subjective wellbeing indicator and time poverty. Additionally, the chapter identifies groups that were disproportionately impacted and provides strategies to mitigate adverse consequences for vulnerable socio-economic and demographic groups in future disruptions. Overall, this dissertation contributes to the literature on transportation and quality of life by introducing a reliable subjective wellbeing scoring method that can be used to evaluate the quality of life implications of transportation systems. It also offers practical applications of wellbeing indicators in identifying differences in wellbeing across the population and provides opportunities for targeted interventions and the development of transportation policies to address equity and sustainability issues. Furthermore, to demonstrate the practicality of the generated knowledge in this dissertation, a web-based wellbeing platform is developed to track changes in the wellbeing of individuals that arise from their daily activity and travel patterns.
ContributorsBatur, Irfan (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail V. (Committee member) / Polzin, Steven E. (Committee member) / Zhou, Xuesong S. (Committee member) / Arizona State University (Publisher)
Created2023
187743-Thumbnail Image.png
Description
The COVID-19 pandemic has revealed the fault lines in society. Whether it be remote work, remote learning, online shopping, grocery and meal deliveries, or medical care, disparities and inequities among socio-economic and demographic groups leave some segments of society more vulnerable and less adaptable. This thesis aims to identify vulnerable

The COVID-19 pandemic has revealed the fault lines in society. Whether it be remote work, remote learning, online shopping, grocery and meal deliveries, or medical care, disparities and inequities among socio-economic and demographic groups leave some segments of society more vulnerable and less adaptable. This thesis aims to identify vulnerable and less adaptable groups in the context of access to food. Using a comprehensive behavioral survey data set collected during the height of the pandemic in 2020, this thesis aims to provide insights on the groups that may have experienced food access vulnerability during the disruption when businesses and establishments were restricted, the risk of contagion was high, and accessing online platforms required technology-savviness and the ability to afford delivery charges. This thesis presents estimation results for a simultaneous equations model of six endogenous choice variables defined by a combination of two food types (groceries and meals) and three access modalities (in-person, online with in-person pickup, and online with delivery). The model estimation results show that attitudes and perceptions play a significant role in shaping pandemic-era access modalities. The model revealed that even after controlling for a host of attitudinal indicators, minorities, those having low household incomes, those living in low-density or rural locations, females, and those with lower educational attainment are particularly vulnerable to being left behind and experiencing challenges in accessing food during a severe and prolonged disruption. Social programs should aim to provide these vulnerable groups with tools and financial resources to leverage online activity engagement and access modalities. Policy recommendations to increase food access for the mostvulnerable in future disruption scenarios are explored.
ContributorsDirks, Abbie Clara (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail V. (Committee member) / Polzin, Steven E. (Committee member) / Arizona State University (Publisher)
Created2023
156079-Thumbnail Image.png
Description
This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special

This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special events. Its two major components, a distributed traffic monitoring and platoon information aggregation system and a platoon-based automated intersection control system, are investigated in this study.



The distributed traffic monitoring and platoon information aggregation system serves as the foundation. Specifically, each equipped vehicle, through the distributed protocols developed, keeps track of the average traffic density and speed within a certain range, flags itself as micro-discontinuity in traffic if appropriate, and cross-checks its flag status with its immediate up- and down-stream vehicles. The micro-discontinuity flags define vehicle groups with similar traffic states, for initiating and terminating traffic information aggregation. The impact of market penetration rate (MPR) is also investigated with a new methodology for performance evaluation under multiple traffic scenarios.

In addition to MPR, the performance of the distributed traffic monitoring and platoon information aggregation system depends on the spatial distribution of equipped vehicles in the road network as well. The latter is affected by traffic dynamics. Traffic signal controls at intersections play a significant role in governing traffic dynamics and will in turn impact the distributed monitoring system. The performance of the monitoring framework is investigated with different g/C ratios under multiple traffic scenarios.

With the distributed traffic monitoring and platoon information aggregation system, platoons can be dynamically identified on the network in real time. This enables a platoon-based automated intersection control system for connected and autonomous vehicles. An exploratory study on such a control system with two control stages are proposed. At Stage I, vehicles of each platoon will synchronize into a target speed through cooperative speed harmonization. Then, a platoon of vehicles with the same speed can be treated as a single vehicle for speed profile planning at Stage II. Its speed profile will be immediately determined given speed profiles of other platoons and the control goal.
ContributorsLi, Peiheng (Author) / Lou, Yingyan (Thesis advisor) / Zhou, Xuesong (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2017
187468-Thumbnail Image.png
Description
In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed

In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed vehicular traffic, having various levels of autonomy, through traffic intersections. Using real-time traffic control algorithms MIDAS minimizes wait times, congestion, and travel times on existing roadways. For traffic engineers, efficient control of complicated traffic movements used at diamond interchanges (DI), which interface streets with freeways, is challenging for normal human driven vehicular traffic, let alone for communicationally-connected vehicles (CVs) due to stochastic demand and uncertainties. This dissertation first develops a proactive traffic control algorithm, MIDAS, using forward-recursion dynamic programming (DP), for scheduling large set of traffic movements of non-connected vehicles and CVs at the DIs, over a finite-time horizon. MIDAS captures measurements from fixed detectors and captures Lagrangian measurements from CVs, to estimate link travel times, arrival times and turning movements. Simulation study shows MIDAS’ outperforms (a) a current optimal state-of-art optimal fixed-cycle time control scheme, and (b) a state-of-art traffic adaptive cycle-free scheme. Subsequently, this dissertation addresses the challenges of improving the road capacity by platooning fully autonomous vehicles (AVs), resulting in smaller headways and greater road utilization. With the MIDAS AI (Autonomous Intersection) control, an effective platooning strategy is developed, and optimal release sequence of AVs is determined using a new forward-recursive DP that minimizes the time-loss delays of AVs. MIDAS AI evaluates the DP decisions every second and communicates optimal actions to the AVs. Although MIDAS AI’s exact DP achieves optimal solution in almost real-time compared to other exact algorithms, it suffers from scalability. To address this challenge, the dissertation then develops MIDAS RAIC (Reinforced Autonomous Intersection Control), a deep reinforcement learning based real-time dynamic traffic control system for AVs at an intersection. Simulation results show the proposed deep Q-learning architecture trains MIDAS RAIC to learn a near-optimal policy that minimizes the total cumulative time loss delay and performs nearly as well as the MIDAS AI.
ContributorsPotluri, Viswanath (Author) / Mirchandani, Pitu (Thesis advisor) / Ju, Feng (Committee member) / Zhou, Xuesong (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2023
171423-Thumbnail Image.png
Description
The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new

The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new methodologies and tools to investigate the impacts and potentials of CAM systems. Due to the hierarchical nature of CAM systems and associated intrinsic correlated human factors and physical infrastructures from various resolutions, simply considering components across different levels into a single model may be practically infeasible and computationally prohibitive in operation and decision stages. One of the greatest challenges in existing studies is to construct a theoretically sound and computationally efficient architecture such that CAM system modeling can be performed in an inherently consistent cross-resolution manner. This research aims to contribute to the modeling of CAM systems on layered transportation networks, with a special focus on the following three aspects: (1) layered CAM system architecture with a tight network and modeling consistency, in which different levels of tasks can be efficiently performed at dedicated layers; (2) cross-resolution traffic state estimation in CAM systems using heterogeneous observations; and (3) integrated city logistics operation optimization in CAM for improving system performance.
ContributorsLu, Jiawei (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Xue, Guoliang (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2022