Matching Items (13)
129485-Thumbnail Image.png
Description

The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective

The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective theory and black holes can be treated thermodynamically. For mergers of anti-de Sitter (AdS) black holes, the second law appears to be violated even in Einstein gravity; we argue, however, that the second law holds when gravitational potential energy is taken into account.

ContributorsChatterjee, Saugata (Author) / Parikh, Maulik (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-07
129170-Thumbnail Image.png
Description

We derive the null energy condition, understood as a constraint on the Einstein-frame Ricci tensor, from world sheet string theory. For a closed bosonic string propagating in a curved geometry, the spacetime interpretation of the Virasoro constraint condition is precisely the null energy condition, to leading nontrivial order in the

We derive the null energy condition, understood as a constraint on the Einstein-frame Ricci tensor, from world sheet string theory. For a closed bosonic string propagating in a curved geometry, the spacetime interpretation of the Virasoro constraint condition is precisely the null energy condition, to leading nontrivial order in the α′ expansion. Thus the deepest origin of the null energy condition lies in world sheet diffeomorphism invariance.

Created2015-04-03
128220-Thumbnail Image.png
Description

We show that effective theories of matter that classically violate the null energy condition cannot be minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to higher-curvature theories of gravity.

Created2015-03-16