Matching Items (2,045)
Filtering by

Clear all filters

131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131935-Thumbnail Image.png
Description
Terrestrial crude oil spills compromise a soil’s ability to provide ecosystem services by inhibiting plant life and threatening groundwater integrity. Ozone gas, a powerful oxidant, shows promise to aid in soil recovery by degrading petroleum hydrocarbons into more bioavailable and biodegradable chemicals. However, previous research has shown that ozone can

Terrestrial crude oil spills compromise a soil’s ability to provide ecosystem services by inhibiting plant life and threatening groundwater integrity. Ozone gas, a powerful oxidant, shows promise to aid in soil recovery by degrading petroleum hydrocarbons into more bioavailable and biodegradable chemicals. However, previous research has shown that ozone can change the soil pH and create harmful organic compounds.
The research objective was to determine the short-term ecological toxicity of ozonation byproducts on seed germination of three distinct plant types (radish, lettuce, and grass) compared to untreated and uncontaminated soils. We hypothesize that the reduction of heavy hydrocarbon contamination in soil by ozone application will provide more suitable habitat for the germinating seeds. The effect of ozone treatment on seed germination and seedling quality was measured using ASTM standards for early seedling growth in conjunction with a gradient of potting soil amendments. Ozonation parameters were measured using established methods and include total petroleum hydrocarbons (TPH), dissolved organic carbon (DOC), and pH.
This study demonstrated the TPH levels fall up to 22% with ozonation, suggesting TPH removal is related to the amount of ozone delivered as opposed to the type of crude oil present. The DOC values increase comparably across crude oil types as the ozonation dose increases (from a background level of 0.25 g to 6.2 g/kg dry soil at the highest ozone level), suggesting that DOC production is directly related to the amount of ozone, not crude oil type. While ozonation reduced the mass of heavy hydrocarbons in the soil, it increased the amount of ozonation byproducts in the soil. For the three types of seeds used in the study, these changes in concentrations of TPH and DOC affected the species differently; however, no seed type showed improved germination after ozone treatment. Thus, ozone treatment by itself had a negative impact on germination potential.
Future research should focus on the effects of post-ozonation, long-term bioremediation on eco-toxicity. By helping define the eco-toxicity of ozonation techniques, this research can improve upon previously established ozone techniques for petroleum remediation and provide economic and environmental benefits when used for soil treatment.
ContributorsJanuszewski, Brielle (Author) / Rittmann, Bruce (Thesis director) / Yavuz, Burcu (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Politics and Global Studies (Contributor, Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131937-Thumbnail Image.png
Description
Photocurable nanocomposites have great potential within advanced manufacturing, multifunctional materials, and most specifically tissue engineering. The properties and characteristics of these nanocomposites can be tailored to mimic those of various tissues and/or cartilage, allowing the bio-inspired synthetic materials to replace them. This project investigates the effect of methacrylate-functionalized (MA-SiO2) and

Photocurable nanocomposites have great potential within advanced manufacturing, multifunctional materials, and most specifically tissue engineering. The properties and characteristics of these nanocomposites can be tailored to mimic those of various tissues and/or cartilage, allowing the bio-inspired synthetic materials to replace them. This project investigates the effect of methacrylate-functionalized (MA-SiO2) and vinyl-functionalized (V-SiO2) silica nanoparticle loading content on the thermal, mechanical, physical, and morphological characteristics of PEG nanocomposites. It was discovered that both V-SiO2 and MA-SiO2 did not considerably impact the glass-transition temperature or hydrophilicity of the material. The gel fraction of composites containing V-SiO2 decreases with the initial addition of 3.8 wt%, but then displays an increase with further addition (>7.4 wt%) until it reaches a plateau at 10.7 wt%. Whereas, the MA-SiO2 induced no significant changes in gel fraction with increased loading. An increase in mechanical properties was also observed with increasing concentration for both sets of series. However, due to the higher crosslink density, MA-SiO2 reached its ultimate mechanical stress threshold at a lower concentration of 7.4 wt%, while V-SiO2 maxed out at 10.7 wt%. Scanning electron microscopy coupled with transmission electron microscopy revealed that V-SiO2 displayed a bimodal size distribution, while MA-SiO2 displayed only one.
ContributorsHocken, Alexis (Co-author, Co-author) / Green, Matthew D. (Thesis director) / Holloway, Julianne L. (Committee member) / Olsen, Bradley D. (Committee member) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131941-Thumbnail Image.png
Description
New genomic resources allow for the investigation of gene family diversity in genome-enabled reptiles. The Toll-like Receptor (TLR) gene family recognizes pathogen-associated molecular patterns (PAMPs) and coevolves with environmental pathogens which makes it a strong candidate for looking at the interplay between gene family diversification and host-pathogen coevolution. Using a

New genomic resources allow for the investigation of gene family diversity in genome-enabled reptiles. The Toll-like Receptor (TLR) gene family recognizes pathogen-associated molecular patterns (PAMPs) and coevolves with environmental pathogens which makes it a strong candidate for looking at the interplay between gene family diversification and host-pathogen coevolution. Using a new orthology curation pipeline and phylogenetic reconstruction, a novel gene expansion event of TLR8 was identified to be exclusive to crocodilians and chelonians with species-specific pseudogenization events. A new gene, TLR21-like, was identified as a part of the TLR11 subfamily. These findings uncover reptile-specific gene family evolution and provide indications of the role of habitat in this process.
ContributorsMorales, Matheo (Author) / Kusumi, Kenro (Thesis director) / Dolby, Greer (Committee member) / Scott, Peter (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131942-Thumbnail Image.png
Description
There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially

There are currently no disease-modifying treatments to halt or attenuate the progression of Alzheimer’s disease (AD). Transgenic rodent models have provided researchers the ability to recapitulate particular pathological and symptomological events in disease progression. Complete reproduction of all features of AD in a rodent model has not been achieved, potentially lending to the inconclusive treatment results at the clinical level. Recently, the TgF344-AD transgenic rat model has started to be evaluated; however, it has not been well characterized in terms of its cognition, which is fundamental to understanding the trajectory of aging relative to pathology and learning and memory changes. Therefore, the aim of the current study was to identify cognitive outcomes at 6, 9, and 12 months of age in the TgF344-AD rat model. Sixty female transgenic (Tg) and wildtype (WT) rats were tested on the water radial arm maze, Morris water maze, and visible platform task to evaluate cognition. Results from the asymptotic phase of the water radial arm maze showed that the 6 mo-Tg animals had marginally impaired working memory compared to 6 mo-WT rats, and 12 mo-Tg rats had significantly impaired working memory compared to 12 mo-WT rats. The 9 mo-Tg animals did not demonstrate a significant difference in working memory errors compared to the 9 mo-WT animals. This pattern of impairment, wherein Tg animals made more working memory errors compared to WT animals at the 6 and 12 month time points, but not at the 9 month time point, may be indicative of an inflammatory response that proves helpful at incipient stages of disease progression but eventually leads to further cognitive impairment. These results provide insight into the potential earliest time point that prodromal cognitive symptoms of AD exist, and how they progress with aging. Brain tissue was collected at sacrifice for future analyses of pathology, which will be used to glean insight into the temporal progression of pathological and cognitive outcomes.
ContributorsBulen, Haidyn Leigh (Co-author) / Bulen, Haidyn (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Conrad, Cheryl (Committee member) / Woner, Victoria (Committee member) / Peña, Veronica (Committee member) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially

With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially in rural communities, are not taught the factors that increase your risk of getting cancer in the future. This leads to students not having the tools to think about the repercussions that their actions can have in their distant future in regard to their risk of getting cancer. I went to six schools throughout the valley and the White Mountains of Arizona with differing education levels and demographics to provide them with prevention strategies that they could implement into their daily lives to reduce their risk of getting cancer in the future. Some of the schools had curriculums that included cancer and some of the factors that increase your risk, while others never mention what is happening biologically when a person has cancer. I introduced factors such as no smoking or tobacco use, diet, exercise, sunscreen use, avoiding alcohol, and getting screened regularly. While at each school, I discussed the importance of creating these healthy habits while they are young because cancer is a disease that comes from the accumulation of mutations that can begin occurring in their bodies even now. After my presentation, 98.6% of the 305 students who viewed my presentation felt like they had learned something from the presentation and were almost all willing to implement at least one of the changes into their daily lives.
ContributorsGoforth, Michelle Nicole (Author) / Compton, Carolyn (Thesis director) / Lake, Douglas (Committee member) / Popova, Laura (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Immigrant families expect their children to go above and beyond since they have access to better facilities and opportunities in comparison to their home land. In my autobiographical works of art for my Barrett Honors Thesis project, I explore how my family has become more Americanized, yet still holds traditional

Immigrant families expect their children to go above and beyond since they have access to better facilities and opportunities in comparison to their home land. In my autobiographical works of art for my Barrett Honors Thesis project, I explore how my family has become more Americanized, yet still holds traditional values. I’ve focused on how differences in culture have molded different sets of morals between my parents, me, and my sibling. My series of graphite drawings on paper are a collection of milestones in my life. It may not be a completely fluid timeline but all the important points are present and the viewer can ponder what happened in snapshots of my life. The difference in culture is depicted through representations of clothing, posture, praying, religion, and subjects.
ContributorsChu, Amanda R (Author) / Hogden, Heidi (Thesis director) / Green, Heather (Committee member) / Materials Science and Engineering Program (Contributor) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131818-Thumbnail Image.png
Description
Background: Inadequate hydration can have several adverse effects on health. In children, it can negatively affect their health and cognitive performance. The effects of fruits and vegetables on the hydration of children have not been adequately studied. This study included 177 children in this age group and examined the contribution

Background: Inadequate hydration can have several adverse effects on health. In children, it can negatively affect their health and cognitive performance. The effects of fruits and vegetables on the hydration of children have not been adequately studied. This study included 177 children in this age group and examined the contribution of fruits and vegetables (F&V) on total water intake (TWI).

Methods: Two-day dietary and fluid intake records as well as 24-h urine samples were collected from 177 children over different weekends. The dietary records were analyzed with Nutrition Data System for Research to obtain TWI from food (TWI-F) as well as TWI from fruits and vegetables (TWI-FV). The fluid intake data was used to determine TWI from liquids (TWI-L). The urine samples were analyzed for volume (UVol), urine osmolality (UOsm), urine specific gravity (USG), and urine color (UCol) to examine hydration. Age was categorized into 3, 4-8, and 9-13 y based on the Institute of Medicine (IOM).

Results: About 52% of the children did not meet water intake recommendations by IOM and 39.8% of the children were underhydrated based on elevated urine osmolality. The average TWI was found to be 1,911± 70 mL. TWI-F was observed to be 492±257 mL, while TWI-L was 1,419±702 mL. TWI-FV only contributed 200±144 mL. As expected TWI was significantly higher in the older children (9-13 y) than children in other age group (3 and 4-8 y). The average UVol was 709±445 mL, USG was 1.019±0.006, UOsm was 701±233 mOsm·kg-1, and UCol was a 3±1 (based on the urine color chart). Only urine volume seemed to be influenced by the age of the children as it was significantly higher for the children in the 9-13 y age group.

Conclusion: Nearly half of the children did not meet water recommendations by IOM and were underhydrated. Fruits and vegetables did not have a significant contribution to TWI. Dietary interventions to increase F&V consumption, lower consumption of SSB, as well as maintain proper hydration may benefit the health of children.
ContributorsJohal, Ramanpreet Kaur (Author) / Kavouras, Stavros (Thesis director) / Suh, HyunGyu (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131819-Thumbnail Image.png
Description
Cerebral lateralization describes the asymmetries between the two halves of the brain which results in side-specialized processing of certain functions. This phenomenon provides a selective advantage by promoting enhanced cognitive abilities. However, due to the plastic nature of lateralization, an individual’s lateralization is highly subject to change by many external

Cerebral lateralization describes the asymmetries between the two halves of the brain which results in side-specialized processing of certain functions. This phenomenon provides a selective advantage by promoting enhanced cognitive abilities. However, due to the plastic nature of lateralization, an individual’s lateralization is highly subject to change by many external factors, such as pollution, throughout its life. Additionally, lateralized regions are dependent on different contexts, so lateralized elements do not all experience the same effects. A common pollutant found worldwide is bisphenol-A (BPA), a critical component of many plastics. BPA is a known endocrine disruptor that can agonize and antagonize the functions of sex steroids. Other studies have demonstrated the importance of sex steroids in regulating the development of cerebral lateralization; BPA may similarly affect lateralization. A popular research animal for studying toxicology is the zebrafish. Its advantages include a fully sequenced genome, many human orthologs, and more importantly, expresses lateralized behaviors that are indicative of the strength of its cerebral lateralization. This experiment analyzed the effects of BPA exposure on visual lateralization of zebrafish. Given the role that sex steroids play in moderating lateralization, it was hypothesized that exposing zebrafish to BPA would diminish the strength of lateralization in the brain which would translate into reduced behavioral lateralization. To test this, one group was exposed to 0.01 mg/L BPA for one week and compared against a control group in their eye preference when approaching a visual cue. Two settings, a foraging context and a social context, were utilized to examine the scope of impairment in lateralization. The control group in both settings displayed similar strengths in behavioral lateralization with a left eye preference. However, the lateralized response faded completely with BPA treatment. This experiment demonstrates that BPA induces loss of lateralization and possesses similar impacts on mechanisms controlling investigatory behavior in these two contexts. Wild populations may encounter higher concentrations of BPA, and although there is greater variability in these exposures, this experiment proves that exposure even beyond critical periods of development can impair lateralization. Additional research will have to be conducted to identify the effects of BPA on other lateralized behaviors and sensory modalities to pinpoint the exact mechanisms through which BPA influences lateralization.
ContributorsHuang, Alexander (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Conroy-Ben, Otakuye (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131820-Thumbnail Image.png
Description
Those that must follow a Celiac diet should know that there are challenges that come with it. Wheat contains a ton of essential vitamins and minerals such as folate, magnesium, thiamin and niacin among many others. By cutting these out, it is possible to become deficient in these essential nutrients

Those that must follow a Celiac diet should know that there are challenges that come with it. Wheat contains a ton of essential vitamins and minerals such as folate, magnesium, thiamin and niacin among many others. By cutting these out, it is possible to become deficient in these essential nutrients that play roles all throughout the body. One of our goals in making this cookbook was to include recipes that would be packed with these dietary components. We wanted to not only make this cookbook tangible for newly-diagnosed Celiac people, but also ensure that they have the balanced diet they need to avoid deficiencies. While admittedly not every meal is going to be loaded with those good vitamins and minerals, we believe the phrase “everything in moderation” is a good way to approach this new diet.
ContributorsMoir, Carmen Juel (Co-author) / Horner, Hannah (Co-author) / Johnston, Carol (Thesis director) / Grgich, Traci (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05