Matching Items (23)
150098-Thumbnail Image.png
Description
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many

Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
ContributorsYekani Fard, Masoud (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
136382-Thumbnail Image.png
Description
The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace

The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace technology. This technique employs PZT transducers to actuate and collect guided Lamb wave signals. Matching pursuit decomposition (MPD) is used to decompose the signal into a cross-term free time-frequency relation. This decoupling of time and frequency facilitates the calculation of a signal's time-of-flight along a path between an actuator and sensor. Using the time-of-flights, comparisons can be made between similar composite structures to find damaged regions by examining differences in the time of flight for each path between PZTs, with respect to direction. Relatively large differences in time-of-flight indicate the presence of new or more significant damage, which can be verified using a physics-based approach. Wave propagation modeling is used to implement a physics based approach to this method, which is coupled with adaptive algorithms that take into account currently existing damage to a composite structure. Previous SHM techniques for composite structures rely on the assumption that the composite is initially free of all damage on both a macro and micro-scale, which is never the case due to the inherent introduction of material defects in its fabrication. This method provides a novel technique for investigating the presence and nature of damage in composite structures. Further investigation into the technique can be done by testing structures with different sizes of damage and investigating the effects of different operating temperatures on this SHM system.
ContributorsBarnes, Zachary Stephen (Author) / Chattopadhyay, Aditi (Thesis director) / Neerukatti, Rajesh Kumar (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
130409-Thumbnail Image.png
Description
Because metallic aircraft components are subject to a variety of in-service loading conditions, predicting their fatigue life has become a critical challenge. To address the failure mode mitigation of aircraft components and at the same time reduce the life-cycle costs of aerospace systems, a reliable prognostics framework is essential. In

Because metallic aircraft components are subject to a variety of in-service loading conditions, predicting their fatigue life has become a critical challenge. To address the failure mode mitigation of aircraft components and at the same time reduce the life-cycle costs of aerospace systems, a reliable prognostics framework is essential. In this paper, a hybrid prognosis model that accurately predicts the crack growth regime and the residual-useful-life estimate of aluminum components is developed. The methodology integrates physics-based modeling with a data-driven approach. Different types of loading conditions such as constant amplitude, random, and overload are investigated. The developed methodology is validated on an Al 2024-T351 lug joint under fatigue loading conditions. The results indicate that fusing the measured data and physics-based models improves the accuracy of prediction compared to a purely data-driven or physics-based approach.
Created2014-04-01
130422-Thumbnail Image.png
Description
The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB)

The flexural behavior of epoxies was investigated by performing mechanical tests and applying statistical Weibull theory and analytical methods to the results. The effects of loading systems and environmental conditions were also considered. Three kinds of epoxies were studied: Epon E863, PRI 2002, and PR520. In total, 53 three-point-bending (3PB) Epon E863 samples and 26 3PB PR520 were tested immediately after curing, together with 26 four-point-bending (4PB) PRI2002 samples stored at 60°C and 90% Rh for 48 weeks. The Weibull parameters were estimated using both linear regression and the moments method. The statistical character of the Weibull model leads to uncertainty in the evaluated parameters, even for a large number of experiments. This study analyzed the ratio of flexural strength to tensile strength in bulk epoxy resin polymers. An analytical method previously developed by the authors to study the relationship between uniaxial tension/compression stress-strain curves and flexural load-deflection response was used to obtain the ratio. The results show that the Weibull model overpredicted the aforementioned ratio in different load arrangements.
Created2014-12-01
132551-Thumbnail Image.png
Description
This experiment analyzed the degradation mechanisms in polymer matrix composite (PMC) samples after more than 50 years of simulated exposure to hygrothermal conditioning. This strong, form-adaptive, lightweight material is suitable for use on critical structures including nuclear powerplants and spacecrafts as primary reinforcers to improve fracture toughness. Current literature regarding

This experiment analyzed the degradation mechanisms in polymer matrix composite (PMC) samples after more than 50 years of simulated exposure to hygrothermal conditioning. This strong, form-adaptive, lightweight material is suitable for use on critical structures including nuclear powerplants and spacecrafts as primary reinforcers to improve fracture toughness. Current literature regarding PMC material has a poor understanding of its delamination trends and varying interphase properties that determine its overall reliability under extreme weather conditions. This paper will evaluate the long-term impact from exposure to heat and humidity regarding the material’s stiffness and degradation to confirm PMC’s reliability for use in structures that undergo these conditions. To study this phenomenon, aged and unaged PMC samples were analyzed on the nanoscale using PeakForce Quantitative Nanomechanical mode (PF-QNM) of Atomic Force Microscopy with an indentation tip no greater than 10nm in radius. This paper compares this testing method to the results from recent research on other microscopy modes to discuss the validity of the PF-QNM model as it is used for this analysis. The data obtained allowed for analysis of crack propagation and quantification of strength in interphase between the composite’s constituents. This research verifies the testing method for which a comprehensive understanding of the environmental influences on PMC mechanical properties could be achieved.
ContributorsTotillo, Anita (Co-author, Co-author) / Yekani Fard, Masoud (Thesis director) / Patel, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131171-Thumbnail Image.png
Description
In this conference paper, nanoscale material property data and ASTM mode I interlaminar fracture results for three-phase buckypaper samples are presented and analyzed. Vacuum filtration and surfactant-free methods were used to manufacture buckypaper membranes. Epoxy infused buckypaper membranes were placed in front of the crack tip in a stitch bonded

In this conference paper, nanoscale material property data and ASTM mode I interlaminar fracture results for three-phase buckypaper samples are presented and analyzed. Vacuum filtration and surfactant-free methods were used to manufacture buckypaper membranes. Epoxy infused buckypaper membranes were placed in front of the crack tip in a stitch bonded carbon fiber polymer matrix composite using a hand layup technique. Peak Force Quantitative Nanomechanical Mapping (PFQNM), using probes with nominal tip radius in the range of 5 to 8 nm were used. PFQNM fully characterized the interphase region between a three-phase sample of carbon monofilament, epoxy resin, and multi-walled carbon nanotube (MWCNT) buckypaper. This experiment captured reproducible nanoscale morphological, viscoelastic, elastic and energy properties of porous MWCNT buckypaper samples. An enlarged interphase region surrounding the CNT buckypaper was found. The buckypaper and epoxy interphase thickness was found to be 50nm, higher than the 10-40nm reported for epoxy and carbon monofilaments. The observed MWCNT structure provides explanation of the increased surface roughness compared to the smooth carbon monofilaments. The increased surface roughness likely improves mechanical interlocking with the epoxy of adjacent lamina. The interphase and subsurface characterization data at the nanoscale level provide explanation for a change in crack propagation toughness. Nanoscale analysis of the buckypaper surface proved the inhomogeneous properties even at the scale of a few square micrometer. The improvement in crack initiation and propagation energy is due to mechanical interlocking, crack path diversion, and the large interphase zone surrounding the buckypaper.
ContributorsMester, Jack (Author) / Yekani Fard, Masoud (Thesis director) / Patel, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131174-Thumbnail Image.png
Description
Carbon Fiber Reinforced Polymers (CFRP) are a promising engineering material because of their multifunctionality and desirable mechanical, electrical, and thermal properties. The mechanical and fracture properties of CFRPs rely on effective stress transfer from the bulk matrix to individual carbon fibers. Pristine carbon fibers (CF) are chemically unreactive and smooth,

Carbon Fiber Reinforced Polymers (CFRP) are a promising engineering material because of their multifunctionality and desirable mechanical, electrical, and thermal properties. The mechanical and fracture properties of CFRPs rely on effective stress transfer from the bulk matrix to individual carbon fibers. Pristine carbon fibers (CF) are chemically unreactive and smooth, which inhibits stress transfer mechanisms and makes CF susceptible to matrix debonding. Current composite research aims to improve the synergy between the CF and surrounding matrix by engineering the interphase. The composite interphase is characterized by mechanical properties deviating from the fiber and matrix properties. Carbon nanotubes (CNT), graphene nanoplatelets, and other carbon nanofillers have been studied extensively for their interphase-enhancing capabilities.
ContributorsPensky, Alek R (Author) / Yekani Fard, Masoud (Thesis director) / Zhu, Haolin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133666-Thumbnail Image.png
Description
Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down into pellets mechanically, and re-extruded into filament. This simulates a recycling iteration that the material would undergo in industry. The samples are recycled 0, 1, 3, and 5 times, then printed into rectangular and dog-bone shapes. These shapes are used to perform dynamic mechanical analysis (DMA) and 3-point bending for shape recovery testing. Samples will also be used for scanning electron microscopy (SEM) to characterize their microstructure.
ContributorsSweeney, Andrew Joseph (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133750-Thumbnail Image.png
Description
Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set

Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set by Fiber Reinforced Composite (FRC) Pipe and Fittings for Underground Fire Protection Service [1], developing a library for different damage types for seamless composite pipes, and evaluating pre-existing flaws with flash thermography, carrying out hydrostatic testing, and performing nondestructive testing (NDT) to characterize damage induced on the pipes such as cracking, crazing, and fiber breakage. The tasks outlined will be used to develop design guidelines for different combinations of loading systems.
ContributorsFoster, Collin William (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05