Matching Items (14)
Filtering by

Clear all filters

157123-Thumbnail Image.png
Description
In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable

In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users in a sustainable manner is of the urgent necessities to maintain good water quantity and quality.

In this dissertation, predictive water allocation optimization models were developed which can be used to easily identify good alternatives for water management that can then be discussed, debated, adjusted, and simulated in greater detail. This study provides guidance for decision makers in Iraq for potential future conditions, where water supplies are reduced, and demonstrates how it is feasible to adopt an efficient water allocation strategy with flexibility in providing equitable water resource allocation considering alternative resource. Using reclaimed water will help in reducing the potential negative environmental impacts of treated or/and partially treated wastewater discharges while increasing the potential uses of reclaimed water for agriculture and other applications. Using reclaimed water for irrigation is logical and efficient to enhance the economy of farmers and the environment while providing a diversity of crops, especially since most of Iraq’s built or under construction wastewater treatment plants are located in or adjacent to agricultural lands. Adopting an optimization modelling approach can assist decision makers, ensuring their decisions will benefit the economy by incorporating global experiences to control water allocations in Iraq especially considering diminished water supplies.
ContributorsAhmed, Ahmed Abdulrazzaq (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2019
156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
ContributorsKo, Ara (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique R. (Thesis advisor) / Myint, Soe (Committee member) / Wang, Zhihua (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2018
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168288-Thumbnail Image.png
Description
Intensified food production on large farms across the world has led to discussions on how to facilitate sustainable policies and practices to reduce nutrient pollution. In Chapter 1, I evaluated the co-variability of agricultural intensification, environmental degradation, and socio-economic indicators throughout the US to explore the potential evidence for the

Intensified food production on large farms across the world has led to discussions on how to facilitate sustainable policies and practices to reduce nutrient pollution. In Chapter 1, I evaluated the co-variability of agricultural intensification, environmental degradation, and socio-economic indicators throughout the US to explore the potential evidence for the existence of sustainable intensification of agriculture in the US. I identified distinct agro-social-eco regions in the US that provide background for future regional studies of (sustainable intensification) SI in the US and beyond. I observed regions of moderate agricultural intensity and lower environmental degradation within the Great Plains, and regions of high agricultural intensity and higher environmental degradation throughout portions of the Midwest. Insights gained from this study can provide roadmaps for improved sustainable agricultural intensification within the US. In Chapter 2, the study summarized state regulations controlling a key nutrient input - the land application of biosolids from human wastewater treatment and manures from regulated animal feeding operations. Results indicate high variability of both manure and biosolids regulations among the states and stark differences in the regulation of land application of biosolids versus manures. This work can be used to identify opportunities for the strengthening of regulatory frameworks for managing these resources with minimal risk to the environment. In Chapter 3, I combined aspects of the previous chapters to understand the potential impact of specific CAFO land application regulations on nutrient pollution and assess if stricter regulations related to better environmental outcomes. I compared TN AND TP accumulated yields in surface waters across US States with state specific CAFO land application regulations across US Policy scenario tests revealed that more restrictions were associated with higher nutrient levels, indicating reactive policy making and delayed nonpoint source pollution responses. Overall, I found that fostering adaptive capacity and management within delineated agro-social-eco regions will likely facilitate sustainable food systems in the US.
ContributorsRauh, Eleanor (Author) / Muenich, Rebecca (Thesis advisor) / Compton, Jana (Committee member) / Parker, Nathan (Committee member) / Hamilton, Kerry (Committee member) / Arizona State University (Publisher)
Created2021
187739-Thumbnail Image.png
Description
Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic

Concerns, such as global warming, greenhouse gas emissions, and changes in hydrological regimes, have been raised in response to the global ecosystem changes caused by humans. Understanding the ecosystem functions is crucial for assisting stakeholders in formulating viable plans to address the issues for a healthier planet. However, a systematic evaluation of recent environmental changes and current ecosystem status, focusing on terrestrial ecosystem carbon-water trade-off, in the Lower Mekong Basin (LMB) is lacking. This dissertation involves: (1) examining the long-term spatiotemporal patterns of ecosystem conditions in response to gains and losses of the forest; (2) evaluating the current consumptive water use variation across all biome and land use types with remotely sensed evapotranspiration (ET) products; (3) analyzing the trade-off between terrestrial carbon and water stress condition during the photosynthesis process in response to different climatic/ecosystem conditions, and (4) developing a spatial optimization model to effectively determine possible reforestation/afforestation options considering the balance between water conservation and carbon fluxes. These studies were conducted with many recently developed algorithms and satellite imagery. This dissertation makes significant contributions and expands the knowledge of the variation in water consumption and carbon assimilation within the ecosystem when different conditions are present. In addition, the spatial optimization model was applied to the entire region to formulate possible reforestation plans under different water-carbon tradeoff scenarios for the first time. The findings and results of this research can be used to provide constructive suggestions to policymakers, managers, planners, government officials, and any other stakeholders in LMB to formulate policies and guidelines for the environmentally responsible and sustainable development of LMB.
ContributorsLi, Yubin (Author) / Myint, Soe (Thesis advisor) / Tong, Daoqin (Thesis advisor) / Muenich, Rebecca (Committee member) / Schaffer-Smith, Danica (Committee member) / Arizona State University (Publisher)
Created2023
187564-Thumbnail Image.png
Description
Pathogens can proliferate in the built environment and can cause disease outbreaks if water and wastewater are not properly managed. Understanding pathogens that grow in engineered systems is crucial to protecting public health and preventing disease. Using dynamic computational models can reveal mechanistic insights into these systems to aid in

Pathogens can proliferate in the built environment and can cause disease outbreaks if water and wastewater are not properly managed. Understanding pathogens that grow in engineered systems is crucial to protecting public health and preventing disease. Using dynamic computational models can reveal mechanistic insights into these systems to aid in understanding risk drivers and determining risk management strategies. The first research chapter of this thesis investigates tradeoffs for reducing the cost associated with Legionnaire’s Disease, hot water scalding, and energy use using a computational framework for evaluating an optimal water heater temperature set point. The model demonstrated that the optimal temperature set point was highly dependent on assumptions made regarding the dose response parameter for a common configuration of an electric water heater in a hospital setting. The optimal temperature was 55°C or 48°C for subclinical vs. clinical severity dose response, respectively, compared with current recommendations of 60°C to kill bacteria and 49°C to prevent scalding and conserve energy. The second research chapter models the population dynamics of antibiotic-susceptible Escherichia coli (E. coli) and antibiotic-resistant E. coli with a population ecology-exposure assessment model in surface water to quantify the risk of urinary tract infection from recreational swimming activities. Horizontal gene transfer (HGT) was modeled in the environment and the human gastrointestinal tract for several scenarios. HGT was generally not a dominant driver of exposure estimates compared to other factors such as growth and dilution, however, the rank order of factors was scenario-dependent. The final research chapter models pathogen transport from wastewater treatment plant (WWTP) exposures and assesses the risk to workers based on several exposure scenarios. Case studies were performed to investigate infection risk drivers across different scenarios, including adjustments for the timing of exposure and personal protective equipment. A web application was developed for use by WWTP risk managers to be used with site-specific data. The proposed modeling frameworks identified risk drivers across several microbial risk scenarios and provide flexible tools for risk managers to use when making water treatment and use decisions for water management plans used for premise plumbing as well as for wastewater treatment practices.
ContributorsHeida, Ashley (Author) / Hamilton, Kerry (Thesis advisor) / Garcia, Margared (Committee member) / Muenich, Rebecca (Committee member) / Wilson, Amanda (Committee member) / Arizona State University (Publisher)
Created2023
171619-Thumbnail Image.png
Description
The United States Department of Agriculture provides requirements for a farm operation to become certified organic, but how do these regulations influence nutrient management on organic farms? There is insufficient evidence to show if the current regulations on nutrient sourcing and application are feasible and effective. An online survey was

The United States Department of Agriculture provides requirements for a farm operation to become certified organic, but how do these regulations influence nutrient management on organic farms? There is insufficient evidence to show if the current regulations on nutrient sourcing and application are feasible and effective. An online survey was administered to owners and operators of organic farms. Survey respondents were offered a free soil test as an incentive to participate and to compare their practices and soil quality. Assessing the current nutrient management under organic regulations provides information to help assess the sustainability of their nutrient management practices. Early data suggest that organic farmers may most often be overapplying and creating legacy sources with this key resource.
ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis advisor) / Zanin, Alaina (Committee member) / Williams, Clinton (Committee member) / Arizona State University (Publisher)
Created2022
171664-Thumbnail Image.png
Description
Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will become even more central. Despite this, the current understanding of

Quantifying the interactions among food, energy, and water (FEW) systems is crucial to support integrated policies for the nexus governance. Metropolitan areas are the main consumption and distribution centers of these three resources and, as urbanization continues, their role will become even more central. Despite this, the current understanding of FEW systems in metropolitan regions is limited. In this dissertation, the key factors leading to a more sustainable FEW system are identified in the metropolitan area of Phoenix, Arizona using the integrated WEAP-MABIA-LEAP platform. In this region, the FEW nexus is challenged by dramatic population growth, competition among increasing FEW demand, and limited water availability that could further decrease under climate change. First, it was shown that the WEAP platform allows the reliable simulations of water allocations from supply sources to demand sectors and that agriculture is a key stressor of the nexus, which will require additional groundwater (+83%) and energy (+15%) if cropland area is preserved over the next 50 years. Second, the climate change impacts on the food-water nexus were quantified by applying the WEAP-MABIA model with climate projections up to 2100 from 27 GCMs under different warming levels. It was found that the increases in temperature will lead to higher atmospheric evaporation demand that will, in turn, reduce crop production at a rate of -4.8% per decade. In the last part, the fully integrated WEAP-MABIA-LEAP platform was applied to investigate future scenarios of the FEW nexus in the metropolitan region. Several scenarios targeting each FEW sector were compared through sustainability indicators quantifying availability/consumption, reliability, and productivity of the three resources. Results showed that increasing renewable energy and changing cropping patterns will increase the FEW nexus sustainability compared to business-as-usual conditions. The findings of this dissertation, along with its analytical approach, support policy making towards integrated FEW governance and sustainable development.
ContributorsGuan, Xin (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Vivoni, Enrique (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2022
158705-Thumbnail Image.png
Description
Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This

Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This essential sector of society therefore plays an important role in ensuring water sources are maintained and that the food system can remain resilient to dwindling water resources. The purpose of this research is to quantify the benefits of organic residuals and reclaimed water use in agriculture in arid environments through the development of a systematic review and case study. Data from the systematic review was extracted to be applied to a case study identifying the viability and benefits of organic residuals on arid agriculture. Results show that the organic residuals investigated do have quantitative benefits to agriculture such as improving soil health, reducing the need for conventional fertilizers, and reducing irrigation needs from freshwater sources. Some studies found reclaimed water sources to be of better quality than local freshwater sources due to environmental factors. Biosolids and manure are the most concentrated of the organic residuals, providing nutrient inputs and enhancing long-term soil health. A conceptual model is presented to demonstrate the quantitative benefits of using a reclaimed water source in Pinal County, Arizona on a hypothetical crop of cotton. A goal of the model is to take implied nutrient inputs from reclaimed water sources and quantify them against standard practice of using irrigated groundwater and conventional fertilizers on agricultural operations. Pinal County is an important case study area where farmers are facing cuts to their water resources amid a prolonged drought in the Colorado River Basin. The model shows that a reclaimed water source would be able to offset all freshwater and conventional fertilizer use, but salinity in reclaimed water sources would force a need for additional irrigation in the form of a large leaching fraction. This review combined with the case study demonstrate the potential for nutrient and water reuse, while highlighting potential barriers to address.
ContributorsKrukowski, William Lee (Author) / Muenich, Rebecca (Thesis advisor) / Williams, Clinton (Committee member) / Hamilton, Kerry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2020
158899-Thumbnail Image.png
Description
De facto potable reuse (DFR) occurs when surface water sources at drinking water treatment plants (DWTPs) contain treated effluents from upstream wastewater treatment plants (WWTPs). Contaminants of emerging concerns (CECs) originate from treated effluents (e.g., unregulated disinfection by-products, pathogenic microorganisms as Cryptosporidium oocyst, Giardia cyst, and Norovirus) can be present

De facto potable reuse (DFR) occurs when surface water sources at drinking water treatment plants (DWTPs) contain treated effluents from upstream wastewater treatment plants (WWTPs). Contaminants of emerging concerns (CECs) originate from treated effluents (e.g., unregulated disinfection by-products, pathogenic microorganisms as Cryptosporidium oocyst, Giardia cyst, and Norovirus) can be present in surface water and pose human health risks linked to CECs. Previously developed De facto Reuse Incidence in our Nations Consumable Supply (DRINCS) model predicted DFR for the national largest DWTPs that serve >10,000 people (N = 2,056 SW intakes at 1,210 DWTPs). The dissertation aims to quantify DFR at all surface water intakes for smaller DWTPs serving ≤10,000 people across the United States and develop a programmed ArcGIS tool for proximity analysis between upstream WWTPs and DWTPs. The tested hypothesis is whether DWTPs serving ≤10,000 people are more likely to be impacted by DFR than larger systems serving > 10,000 people.The original DRINCS model was expanded to include all smaller DWTPs (N = 6,045 SW intakes at 3,984 DWTPs) in the U.S. First, results for Texas predicted that two-thirds of all SW intakes were impacted by at least one WWTP upstream. The level of DFR at SW intakes in Texas ranged between 1% to 20% under average flow and exceeded 90% during mild droughts. Smaller DWTPs in Texas had a higher frequency of DFR than larger systems while < 10% of these DWTPs employed advanced technology (AT) capable of removing CECs. Second, nationally over 40% of surface water intakes at all DWTPs were impacted by DFR under average flow (2,917 of 6,826). Smaller DWTPs had a higher frequency (1,504 and 1,413, respectively) of being impacted by upstream WWTP discharges than larger DWTPs. Third, the difference in DFR levels at smaller versus larger DWTPs was statistically unclear (t-test, p = 0.274). Smaller communities could have high risks to CECs as they rely on surface water from lower-order streams impacted by DFR. Furthermore, smaller DWTPs lack more than twice as advanced unit processes as larger DWTPs with 52.1% and 23%, respectively. DFR levels for DWTPs serving > 10,000 people were statistically higher on mid-size order streams (3, 5, and 8) than those for smaller DWTPs. Finally, DWTPs serving > 10,000 people could pose risks to a population impacted by DFR > 1% as 40 times as those served by smaller DWTPs with 71 million and 1.7 million people, respectively. The total exposed population to risks of CECs served by DWTPs impacted by upstream WWTP discharges (DFR >10%) was estimated at 12.3 million people in the United States. Future studies can use DRINCS results to conduct an epidemiological risk assessment for impacted communities and identify communities that would benefit from advanced technology to remove CECs.
ContributorsNguyen, Thuy Thi Thu (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Fox, Peter (Committee member) / Muenich, Rebecca (Committee member) / Quay, Ray (Committee member) / Arizona State University (Publisher)
Created2020