Matching Items (872)
153171-Thumbnail Image.png
Description
The role of environmental factors that influence atmospheric propagation of sound originating from freeway noise sources is studied with a combination of field experiments and numerical simulations. Acoustic propagation models are developed and adapted for refractive index depending upon meteorological conditions. A high-resolution multi-nested environmental forecasting model forced by coarse

The role of environmental factors that influence atmospheric propagation of sound originating from freeway noise sources is studied with a combination of field experiments and numerical simulations. Acoustic propagation models are developed and adapted for refractive index depending upon meteorological conditions. A high-resolution multi-nested environmental forecasting model forced by coarse global analysis is applied to predict real meteorological profiles at fine scales. These profiles are then used as input for the acoustic models. Numerical methods for producing higher resolution acoustic refractive index fields are proposed. These include spatial and temporal nested meteorological simulations with vertical grid refinement. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the acoustic model for predictions with profiles derived from meteorological simulations and from field experiment observations in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed.



A detailed evaluation of the environmental forecast is conducted by investigating the Surface Energy Balance (SEB) obtained from observations made with an eddy-covariance flux tower compared with SEB from simulations using several physical parameterizations of urban effects and planetary boundary layer schemes. Diurnal variation in SEB constituent fluxes are examined in relation to surface layer stability and modeled diagnostic variables. Improvement is found when adapting parameterizations for Phoenix with reduced errors in the SEB components. Finer model resolution (to 333 m) is seen to have insignificant ($<1\sigma$) influence on mean absolute percent difference of 30-minute diurnal mean SEB terms. A new method of representing inhomogeneous urban development density derived from observations of impervious surfaces with sub-grid scale resolution is then proposed for mesoscale applications. This method was implemented and evaluated within the environmental modeling framework. Finally, a new semi-implicit scheme based on Leapfrog and a fourth-order implicit time-filter is developed.
ContributorsShaffer, Stephen R. (Author) / Moustaoui, Mohamed (Thesis advisor) / Mahalov, Alex (Committee member) / Fernando, Harindra J.S. (Committee member) / Ovenden, Nicholas C. (Committee member) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
156214-Thumbnail Image.png
Description
The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency

The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions.

For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained.

This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor.
ContributorsWalker, Phillip (Author) / Tang, Wenbo (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
Description
This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral

This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral ABL model at very high Reynolds number has been developed using a high order spectral element method which has been validated against the previous literature. This ABL methodology has been used as a building block to drive large wind turbine arrays or wind farms residing inside the boundary layer as documented in the subsequent work. Studies conducted in the thesis involving massive periodic wind farms with neutral ABL have indicated towards the presence of large scale coherent structures that contribute to the power generated by the wind turbines via downdraft mechanisms which are also responsible for the modulation of near wall dynamics. This key idea about the modulation of large scales have seen a lot of promise in the application of flow past vertically staggered wind farms with turbines at different scales. Eventually, studies involving wind farms have been progressively evolved in a framework of inflow-outflow where the turbulent inflow is being fed from the precursor ABL using a spectral interpolation technique. This methodology has been used to enhance the understanding related to the multiscale physics of wind farm ABL interaction, where phenomenon like the growth of the inner layer, and wake impingement effects in the subsequent rows of wind turbines are important owing to the streamwise heterogeneity of the flow. Finally, the presence of realistic geophysical effects in the turbulent inflow have been investigated that influence the flow past the wind turbine arrays. Some of the geophysical effects that have been considered include the presence of the Coriolis forces as well as the temporal variation of mean wind magnitude and direction that might occur due to mesoscale dynamics. This study has been compared against field experimental results which provides an important step towards understanding the capability of the mean data driven LES methodology in predicting realistic flow structures.
ContributorsChatterjee, Tanmoy (Author) / Peet, Yulia T. (Thesis advisor) / Adrian, Ronald J. (Committee member) / Calhoun, Ronald J. (Committee member) / Huang, Huei-Ping (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2018
156722-Thumbnail Image.png
Description
Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures,

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. In the effort of the cross-fertilization across the disciplines of physics-based modeling and spatio-temporal statistics, three topics are investigated in this dissertation aiming to provide a novel quantification and robust justifications of the hydroclimate impacts associated with bioenergy crop expansion. Topic 1 quantifies the hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States using the Weather Research and Forecasting Model (WRF) dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted. Hovmöller and Taylor diagrams are utilized to evaluate simulated temperature and precipitation. In addition, Mann-Kendall modified trend tests and Sieve-bootstrap trend tests are performed to evaluate the statistical significance of trends in soil moisture differences. Finally, this research reveals potential hot spots of suitable deployment and regions to avoid. Topic 2 presents spatio-temporal Bayesian models which quantify the robustness of control simulation bias, as well as biofuel impacts, using three spatio-temporal correlation structures. A hierarchical model with spatially varying intercepts and slopes display satisfactory performance in capturing spatio-temporal associations. Simulated temperature impacts due to perennial bioenergy crop expansion are robust to physics parameterization schemes. Topic 3 further focuses on the accuracy and efficiency of spatial-temporal statistical modeling for large datasets. An ensemble of spatio-temporal eigenvector filtering algorithms (hereafter: STEF) is proposed to account for the spatio-temporal autocorrelation structure of the data while taking into account spatial confounding. Monte Carlo experiments are conducted. This method is then used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
ContributorsWang, Meng, Ph.D (Author) / Kamarianakis, Yiannis (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Fotheringham, A. Stewart (Committee member) / Moustaoui, Mohamed (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2018
156637-Thumbnail Image.png
Description
Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This

strategy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on

average about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising

ifrom errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the

transitionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
ContributorsDurazo, Juan, Ph.D (Author) / Kostelich, Eric J. (Thesis advisor) / Mahalov, Alex (Thesis advisor) / Tang, Wenbo (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131503-Thumbnail Image.png
Description
Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have

Construction is a defining characteristic of geometry classes. In a traditional classroom, teachers and students use physical tools (i.e. a compass and straight-edge) in their constructions. However, with modern technology, construction is possible through the use of digital applications such as GeoGebra and Geometer’s SketchPad.
Many other studies have researched the benefits of digital manipulatives and digital environments through student completion of tasks and testing. This study intends to research students’ use of the digital tools and manipulatives, along with the students’ interactions with the digital environment. To this end, I conducted exploratory teaching experiments with two calculus I students.
In the exploratory teaching experiments, students were introduced to a GeoGebra application developed by Fischer (2019), which includes instructional videos and corresponding quizzes, as well as exercises and interactive notepads, where students could use digital tools to construct line segments and circles (corresponding to the physical straight-edge and compass). The application built up the students’ foundational knowledge, culminating in the construction and verbal proof of Euclid’s Elements, Proposition 1 (Euclid, 1733).
The central findings of this thesis are the students’ interactions with the digital environment, with observed changes in their conceptions of radii and circles, and in their use of tools. The students were observed to have conceptions of radii as a process, a geometric shape, and a geometric object. I observed the students’ conceptions of a circle change from a geometric shape to a geometric object, and with that change, observed the students’ use of tools change from a measuring focus to a property focus.
I report a summary of the students’ work and classify their reasoning and actions into the above categories, and an analysis of how the digital environment impacts the students’ conceptions. I also briefly discuss the impact of the findings on pedagogy and future research.
ContributorsSakauye, Noelle Marie (Author) / Roh, Kyeong Hah (Thesis director) / Zandieh, Michelle (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131511-Thumbnail Image.png
Description
This document is a proposal for a research project, submitted as an Honors Thesis to Barrett, The Honors College at Arizona State University. The proposal summarizes previous findings and literature about women survivors of domestic violence who are suffering from post-traumatic stress disorder as well as outlining the design and

This document is a proposal for a research project, submitted as an Honors Thesis to Barrett, The Honors College at Arizona State University. The proposal summarizes previous findings and literature about women survivors of domestic violence who are suffering from post-traumatic stress disorder as well as outlining the design and measures of the study. At this time, the study has not been completed. However, it may be completed at a future time.
ContributorsKunst, Jessica (Author) / Hernandez Ruiz, Eugenia (Thesis director) / Belgrave, Melita (Committee member) / School of Music (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133904-Thumbnail Image.png
Description
Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population

Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population in terms of prevention. The purpose of this study was to evaluate the relationship between sleep efficiency and serum osteocalcin in college-aged individuals as a means of osteoporosis prevention. Thirty participants ages 18-25 years (22 females, 8 males) at Arizona State University were involved in this cross-sectional study. Data were collected during one week via self-recorded sleep diaries, quantitative ActiWatch, DEXA imaging, and serum blood draws to measure the bone biomarker osteocalcin. Three participants were excluded from the study as outliers. The median (IQR) for osteocalcin measured by ELISA was 11.6 (9.7, 14.5) ng/mL. The average sleep efficiency measured by actigraphy was 88.3% ± 3.0%. Regression models of sleep efficiency and osteocalcin concentration were not statistically significant. While the addition of covariates helped explain more of the variation in serum osteocalcin concentration, the results remained insignificant. There was a trend between osteocalcin and age, suggesting that as age increases, osteocalcin decreases. This was a limited study, and further investigation regarding the relationship between sleep efficiency and osteocalcin is warranted.
ContributorsMarsh, Courtney Nicole (Author) / Whisner, Corrie (Thesis director) / Mahmood, Tara (Committee member) / School of International Letters and Cultures (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05