Matching Items (5)
Filtering by

Clear all filters

128764-Thumbnail Image.png
Description

Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data.

Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day-1, often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.

ContributorsVander Zanden, M. Jake (Author) / Clayton, Murray K. (Author) / Moody, Eric (Author) / Solomon, Christopher T. (Author) / Weidel, Brian C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-30
128814-Thumbnail Image.png
Description

Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds,

Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian–upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species.

ContributorsSoykan, Candan (Author) / Brand, L. Arriana (Author) / Ries, Leslie (Author) / Stromberg, Juliet (Author) / Hass, Christine (Author) / Simmons, David (Author) / Patterson, William (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-01-17
128775-Thumbnail Image.png
Description

Background: Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community

Background: Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively.

Methods and Results: In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying.

Conclusions: Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying remain to be investigated.

ContributorsMcCluney, Kevin (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-10-08
128913-Thumbnail Image.png
Description

Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers,

Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis) and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima), but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia) or hydric Fremont cottonwood (Populus fremontii) and Gooding's willow (Salix goodingii). Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems.

ContributorsMoody, Eric (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-05-07
129590-Thumbnail Image.png
Description

Altered thermal regimes under climate change may influence host-parasite interactions and invasive species, both potentially impacting valuable ecosystem services. There is considerable interest in how parasite life cycle rates, growth, and impacts on hosts will change under altered environmental temperatures. Likewise, transformed thermal regimes may reduce natural resistance and barriers

Altered thermal regimes under climate change may influence host-parasite interactions and invasive species, both potentially impacting valuable ecosystem services. There is considerable interest in how parasite life cycle rates, growth, and impacts on hosts will change under altered environmental temperatures. Likewise, transformed thermal regimes may reduce natural resistance and barriers preventing establishment of invasive species or alter the range and impacts of established exotic species. The Laurentian Great Lakes are some of the most invaded ecosystems and have been profoundly shaped by exotic species. Invasion by the parasitic sea lamprey (Petromyzon marinus) contributed to major declines in many Great Lakes fish populations. In Lake Superior, substantial progress has been made towards controlling invasive sea lamprey and rehabilitating native fish populations. Surface water temperatures in Lake Superior have been increasing rapidly since 1980 presenting a new challenge for management.

Here we test how thermal changes in Lake Superior have impacted the feeding and growth of the parasitic sea lamprey. Sea lamprey have increased in size corresponding with longer durations of thermal habitat (i.e., longer growing seasons) for their preferred hosts. To compare regional differences in sea lamprey feeding and growth rates, we used a bioenergetics model with temperature estimates from a lake-wide hydrodynamic model hindcast from 1979–2006. Spatial differences in patterns of warming across the lake result in regionally different predictions for increases in sea lamprey feeding rates and size. These predictions were matched by data from adult sea lamprey spawning in streams draining into these different thermal regions. Larger sea lampreys will be more fecund and have increased feeding rates, thus increasing mortality among host fishes. Resource management should consider these climate driven regional impacts when allocating resources to sea lamprey control efforts. Under new and evolving thermal regimes, successful management systems may need to be restructured for changing phenology, growth, and shifts in host-parasite systems towards greater impacts on host populations.

ContributorsCline, Timothy J. (Author) / Kitchell, James F. (Author) / Bennington, Val (Author) / Mckinley, Galen A. (Author) / Moody, Eric (Author) / Weidel, Brian C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01