Matching Items (6)
Filtering by

Clear all filters

134651-Thumbnail Image.png
Description
“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.
ContributorsMonus, Brittney Daniel (Author) / Throop, Heather (Thesis director) / Hall, Sharon (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148182-Thumbnail Image.png
Description

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that has shown promise in reducing bycatch of marine megafauna, including sea turtles, cetaceans, and seabirds. However, little research has been conducted to understand the effects of net illumination on fish assemblages, including bony fish and elasmobranchs (i.e. sharks, rays, and skates). Here, I assessed a 7-year dataset of paired net illumination trials using four different types of light (green LEDs, green chemical glowsticks, ultraviolet (UV) lights, and orange lights) to examine the effects of net illumination on fish catch and bycatch in a gillnet fishery at Baja California Sur, Mexico. Analysis revealed no significant effect on bony fish target catch or bycatch for any light type. There was a significant decrease in elasmobranch bycatch using UV and orange lights, with orange lights showing the most promise for decreasing elasmobranch bycatch, resulting in a 50% reduction in bycatch rates. Analysis of the effects of net illumination on elasmobranch target catch was limited due to insufficient data. These results indicate that the illumination of gillnets may offer a practical solution for reducing fish bycatch while maintaining target catch. More research should be conducted to understand the effects of net illumination in different fisheries, how net illumination affects fisher profit and efficiency, and how net illumination affects fish behavior. Further optimization of net illumination is also necessary before the technology can be recommended on a broader scale.

ContributorsBurgher, Kayla Marie (Author) / Senko, Jesse (Thesis director) / Throop, Heather (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162248-Thumbnail Image.png
Description

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more about the drivers of litter decomposition in drylands.

ContributorsMcGroarty, Megan (Author) / Throop, Heather (Thesis director) / Trembath-Reichert, Elizabeth (Committee member) / Reed, Sasha (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor)
Created2021-12
168230-Thumbnail Image.png
Description

As climate change continues, understanding the water use strategies and water relations of cacti becomes even more important in conservation. Cacti are not only one of the most threatened taxonomic groups but also ecologically important to desert ecosystems. Water conservation strategies vary among species of columnar cacti as a tradeoff

As climate change continues, understanding the water use strategies and water relations of cacti becomes even more important in conservation. Cacti are not only one of the most threatened taxonomic groups but also ecologically important to desert ecosystems. Water conservation strategies vary among species of columnar cacti as a tradeoff between photosynthetic and water storage capacities, such as the different volume-to-surface-area ratios in Carnegiea gigantea and Stenocereus thurberi. These variations in water and growth relations could be associated with the basipetal xylem vessel widening pattern that has been observed in many woody plant species, and most recently in cacti as well. This phenomenon provides a buffer to the accumulation of hydrodynamic resistance in xylem vessels as the plant stem elongates, and in cacti, stem water storage tissues (cortex and pith) also provide a buffer. This thesis investigates the rate of basipetal xylem conduit widening in Carnegiea gigantea and Stenocereus thurberi, with the expectation that columnar cacti will show similar rates of widening as other plants. I found that while the xylem conduits in both species widened at significantly different rates, the rate of widening was much lower than expected. While there are a few possible explanations, such as buffering from the succulent cortex tissue, more research on cactus xylem anatomy and its reflection in plant water conduction strategies is needed.

ContributorsCaspeta, Ivanna (Author) / Hultine, Kevin (Thesis director) / Throop, Heather (Thesis director) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2021-05
165449-Thumbnail Image.png
Description
Arid and semiarid ecosystems (known as drylands) cover 45% of global land area and are predicted to expand to encompass half of the world’s land area by the end of the century. Litter decomposition plays a large role in nutrient and carbon cycling in dryland ecosystems, yet it remains poorly

Arid and semiarid ecosystems (known as drylands) cover 45% of global land area and are predicted to expand to encompass half of the world’s land area by the end of the century. Litter decomposition plays a large role in nutrient and carbon cycling in dryland ecosystems, yet it remains poorly understood. Models that accurately predict decomposition in mesic ecosystems fail to accurately describe decomposition in drylands due to differing drivers of decomposition but also because litter in drylands accumulates around litter retention elements (LREs). LREs can be any object or surface that inhibits the movement vectors (e.g., wind) that push litter across drylands, creating a “pool” of litter around the LRE. Litter pooling increases the amount of mixing between litter and soil, creating a microclimate more conducive to microbial decomposition. Due to the increase in microbial decomposition, the decomposition rate for litter around LREs can be markedly different than that of litter not in LREs. To further understand how much litter accumulates in LREs, I studied the differences in litter accumulation between LREs and open areas in five drylands across the Southwestern United States. To do this, I visually analyzed photos of 424 litterbags to determine the cover percentages of four different types of organic litter (grass, broadleaf, reproductive, woody) and rock litter. Visual analysis of litterbags consisted of manually delineating the percent coverage of each of these litter categories. Litterbags had been placed in both open intercanopy areas as well as woody sub-canopy areas in which the plant canopy acted as the LRE. Additionally, 45 of these litterbags were randomly selected for analysis in the computer program FIJI (FIJI is Just ImageJ) to assess the litter area find the percent difference between visual and digital analysis. Areas underneath woody sub-canopies accumulated far more organic matter litter over time than open areas between canopies did but displayed a similar amount of rock litterbag cover. Shrub microsites also displayed far more varied litterbag cover percentages than open microsites. Data also suggested that litter does not always accumulate underneath shrubs or open intercanopy areas and may dissipate as time progresses. These results support the idea that litter accumulation varies throughout drylands, and that soil and litter mix frequently in LREs such as under woody plant canopies. The percent difference between FIJI analysis and visual analysis was generally negative, reflecting that visual estimation of litterbag cover was typically smaller than digital estimates. Cumulatively, litter was shown to accumulate much more around LREs and even move from them – supporting the idea that litter decomposition models need to account for litter movement in drylands to be accurate.
ContributorsNelson, Benjamin (Author) / Throop, Heather (Thesis director) / Ball, Becky (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05