Matching Items (32)
Description

Our objectives are to:
       1. Review the LCA literature to determine the dominant environmental impact categories in
           wild-caught fisheries in order to evaluate which phases are causing the greatest impacts.
       2. Determine how these impacts can best be mitigated and develop a

Our objectives are to:
       1. Review the LCA literature to determine the dominant environmental impact categories in
           wild-caught fisheries in order to evaluate which phases are causing the greatest impacts.
       2. Determine how these impacts can best be mitigated and develop a framework that seeks
           to incorporates LCA into sustainable seafood guides so that consumers can make better-
           informed decisions.

This framework will include developing meaningful LCA impact categories for sustainable seafood guides. Despite their importance, we considered social factors beyond the scope of this paper.

Created2012-05
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015
156882-Thumbnail Image.png
Description
Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream

Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream reach or exported downstream. I examined the composition of DOM from vascular wetland plants, filamentous algae, and riparian tree leaf litter in Sonoran Desert streams and its decomposition by stream microbes. I used a combination of field observations, in-situ experiments, and a manipulative laboratory incubation to test (1) how dominant primary producers influence DOM chemical composition and ecosystem metabolism at the reach scale and (2) how DOM composition and nitrogen (N) content control microbial decomposition and stream uptake of DOM. I found that differences in streamwater DOM composition between two distinct reaches of Sycamore Creek did not affect in-situ stream respiration and gross primary production rates. Stream sediment microbial respiration rates did not differ significantly when incubated in the laboratory with DOM from wetland plants, algae, and leaf litter, thus all sources were similarly labile. However, whole-stream uptake of DOM increased from leaf to algal to wetland plant leachate. Desert streams have the potential to process DOM from leaf, wetland, and algal sources, though algal and wetland DOM, due to their more labile composition, can be more readily retained and mineralized.
ContributorsKemmitt, Kathrine (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2018
156978-Thumbnail Image.png
Description
Rangelands are an extensive land cover type that cover about 40% of earth’s ice-free surface, expanding into many biomes. Moreover, managing rangelands is crucial for long-term sustainability of the vital ecosystem services they provide including carbon (C) storage via soil organic carbon (SOC) and animal agriculture. Arid rangelands are particularly

Rangelands are an extensive land cover type that cover about 40% of earth’s ice-free surface, expanding into many biomes. Moreover, managing rangelands is crucial for long-term sustainability of the vital ecosystem services they provide including carbon (C) storage via soil organic carbon (SOC) and animal agriculture. Arid rangelands are particularly susceptible to dramatic shifts in vegetation cover, physical and chemical soil properties, and erosion due to grazing pressure. Many studies have documented these effects, but studies focusing on grazing impacts on soil properties, namely SOC, are less common. Furthermore, studies testing effects of different levels of grazing intensities on SOC pools and distribution yield mixed results with little alignment. The primary objective of this thesis was to have a better understanding of the role of grazing intensity on arid rangeland soil C storage. I conducted research in long established pastures in Jornada Experimental Range (JER). I established a 1500m transect in three pastures originating at water points and analyzed vegetation cover and SOC on points along these transects to see the effect of grazing on C storage on a grazing gradient. I used the line-point intercept method to measure and categorize vegetation into grass, bare, and shrub. Since soil adjacent to each of these three cover types will likely contain differing SOC content, I then used this vegetation cover data to calculate the contribution of each cover type to SOC. I found shrub cover and total vegetation cover to decrease, while grass and bare cover increased with decreasing proximity to the water source. I found areal (g/m2) and percent (go SOC to be highest in the first 200m of the transects when accounting for the contribution of the three vegetation cover types. I concluded that SOC is being redistributed toward the water source via foraging and defecation and foraging, due to a negative trend of both total vegetation cover and percent SOC (g/g). With the decreasing trends of vegetation cover and SOC further from pasture water sources, my thesis research contributes to the understanding of storage and distribution of SOC stocks in arid rangelands.
ContributorsBoydston, Aaron (Author) / Sala, Osvaldo (Thesis advisor) / Throop, Heather (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
134651-Thumbnail Image.png
Description
“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.
ContributorsMonus, Brittney Daniel (Author) / Throop, Heather (Thesis director) / Hall, Sharon (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148182-Thumbnail Image.png
Description

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that has shown promise in reducing bycatch of marine megafauna, including sea turtles, cetaceans, and seabirds. However, little research has been conducted to understand the effects of net illumination on fish assemblages, including bony fish and elasmobranchs (i.e. sharks, rays, and skates). Here, I assessed a 7-year dataset of paired net illumination trials using four different types of light (green LEDs, green chemical glowsticks, ultraviolet (UV) lights, and orange lights) to examine the effects of net illumination on fish catch and bycatch in a gillnet fishery at Baja California Sur, Mexico. Analysis revealed no significant effect on bony fish target catch or bycatch for any light type. There was a significant decrease in elasmobranch bycatch using UV and orange lights, with orange lights showing the most promise for decreasing elasmobranch bycatch, resulting in a 50% reduction in bycatch rates. Analysis of the effects of net illumination on elasmobranch target catch was limited due to insufficient data. These results indicate that the illumination of gillnets may offer a practical solution for reducing fish bycatch while maintaining target catch. More research should be conducted to understand the effects of net illumination in different fisheries, how net illumination affects fisher profit and efficiency, and how net illumination affects fish behavior. Further optimization of net illumination is also necessary before the technology can be recommended on a broader scale.

ContributorsBurgher, Kayla Marie (Author) / Senko, Jesse (Thesis director) / Throop, Heather (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162248-Thumbnail Image.png
Description

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more about the drivers of litter decomposition in drylands.

ContributorsMcGroarty, Megan (Author) / Throop, Heather (Thesis director) / Trembath-Reichert, Elizabeth (Committee member) / Reed, Sasha (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor)
Created2021-12
Description

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for wildlife, illuminating the growing awareness that cities are crucial to the future of conservation and combating the global biodiversity crisis. In terms of the biodiversity crisis, bats are a relevant species of concern. In many studies, different bat species have been broadly classified according to their ability to adapt to urban environments. There is evidence that urban areas can filter bat species based on traits and behavior, with many bats possessing traits that do not allow them to live in cities. The three broad categories are urban avoiders, urban adapters, or urban exploiters based upon where their abundance is highest along a gradient of urban intensity. A common example of an urban exploiter bat is a Mexican Free-tailed bat, which can thrive and rely on urban environments and it is found in the Phoenix Metropolitan area. Bats are important as even in urban environments they play vital ecological roles such as cactus pollination, insect management, and seed dispersal. Bat Crazy is a thesis project focused on urban enhancement and the field of urban biodiversity. The goals of this thesis are to observe how bio-conscious urban cities that work to promote species conservation can serve as a positive tool to promote biodiversity and foster community education and engagement for their urban environment.

ContributorsKaiser, Nicole (Author) / Senko, Jesse (Thesis director) / Angilletta, Michael (Committee member) / Lynch, John (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The Arizona Board of Education decides the science curricula for students K-6. The standards lack an in depth knowledge of marine life, marine science, ocean conservation, and more related topics. Through interviews with teachers, faculty, and research on ocean literacy and coral reefs, My Coral Reef Booklet assembles various learning

The Arizona Board of Education decides the science curricula for students K-6. The standards lack an in depth knowledge of marine life, marine science, ocean conservation, and more related topics. Through interviews with teachers, faculty, and research on ocean literacy and coral reefs, My Coral Reef Booklet assembles various learning activities to cater to students from a variety of education, financial and impairment backgrounds. My Coral Reef Booklet addresses coral reef basics and how students can play their part in coral reef conservation despite their location.

ContributorsHynds, Janna (Author) / Hedges, Craig (Thesis director) / Senko, Jesse (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2023-05