Matching Items (143)
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
148132-Thumbnail Image.png
Description

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and Double Cantilever Beam (DCB) test. The ENF test is designed to <br/>find the mode II interlaminar fracture toughness, and the DCB test, the mode I interlaminar <br/>fracture toughness. In this thesis, thermopressed Honeywell Spectra Shield® 5231 <br/>composite specimens made of ultra-high molecular weight polyethylene (UHMWPE), <br/>manufactured under two different pressures (3000 psi and 6000 psi), are tested in the <br/>laboratory to find its delamination properties. The test specimen preparation, experimental <br/>procedures, and data reduction to determine the mode I and mode II interlaminar fracture <br/>properties are discussed. The ENF test results show a 15.8% increase in strain energy <br/>release rate for the 6000 psi specimens when compared to the 3000 psi specimens. <br/>Conducting the DCB tests proved to be challenging due to the low compressive strength <br/>of the material and hence required modifications to the test specimens. An estimate of the <br/>mode I interlaminar fracture toughness was found for only two of the 6000 psi specimens.

ContributorsRyder, Chandler (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Neithalath, Narayanan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149854-Thumbnail Image.png
Description
There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily diary reports completed by participants of a blind naltrexone intervention trial. These self-reports include assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and additional external variables (disturbances) that affect these outcomes (e.g., stress, anxiety, and mood). Using prediction-error methods, a multi-input model describing the effect of drug, placebo and other disturbances on outcomes of interest is developed. This discrete time model is approximated by a continuous second order model with zero, which was found to be adequate to capture the dynamics of this intervention. Data from 40 participants in two clinical trials were analyzed and participants were classified as responders and non-responders based on the models obtained from system identification. The dynamical models can be used by a model predictive controller for automated dosage selection of naltrexone using feedback/feedforward control actions in the presence of external disturbances. The clinical requirement for categorical (i.e., discrete-valued) drug dosage levels creates a need for hybrid model predictive control (HMPC). The controller features a multiple degree-of-freedom formulation that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed loop system. The nominal and robust performance of the proposed control scheme is examined via simulation using system identification models from a representative participant in the naltrexone intervention trial. The controller evaluation described in this thesis gives credibility to the promise and applicability of control engineering principles for optimizing adaptive interventions.
ContributorsDeśapāṇḍe, Sunīla (Author) / Rivera, Daniel E. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150156-Thumbnail Image.png
Description
Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious

Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious microstructure. Therefore, these tests lack accurate measurement of the drying rate and data interpretation based on the principles of transport properties is limited. A vacuum-based test method capable of simulating early-age cracks in 2-D cement paste is developed which continuously monitors the weight loss and changes to the surface characteristics. 2-D crack evolution is documented using time-lapse photography. Effects of sample size, w/c ratio, initial curing and fiber content are studied. In the subsequent analysis, the cement paste phase is considered as a porous medium and moisture transport is described based on surface mass transfer and internal moisture transport characteristics. Results indicate that drying occurs in two stages: constant drying rate period (stage I), followed by a falling drying rate period (stage II). Vapor diffusion in stage I and unsaturated flow within porous medium in stage II determine the overall rate of evaporation. The mass loss results are analyzed using diffusion-based models. Results show that moisture diffusivity in stage I is higher than its value in stage II by more than one order of magnitude. The drying model is used in conjunction with a shrinkage model to predict the development of capillary pressures. Similar approach is implemented in drying restrained ring specimens to predict 1-D crack width development. An analytical approach relates diffusion, shrinkage, creep, tensile and fracture properties to interpret the experimental data. Evaporation potential is introduced based on the boundary layer concept, mass transfer, and a driving force consisting of the concentration gradient. Effect of wind velocity is reflected on Reynolds number which affects the boundary layer on sample surface. This parameter along with Schmidt and Sherwood numbers are used for prediction of mass transfer coefficient. Concentration gradient is shown to be a strong function of temperature and relative humidity and used to predict the evaporation potential. Results of modeling efforts are compared with a variety of test results reported in the literature. Diffusivity data and results of 1-D and 2-D image analyses indicate significant effects of fibers on controlling early-age cracks. Presented models are capable of predicting evaporation rates and moisture flow through hydrating cement-based materials during early-age drying and shrinkage conditions.
ContributorsBakhshi, Mehdi (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created2011
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150302-Thumbnail Image.png
Description
Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters -

Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters - P, I and D of these controllers so that system stability and optimum performance is achieved. Also, a certain amount of robustness to the process is expected from the PID controllers. In the past, many different methods for tuning PID parameters have been developed. Some notable techniques are the Ziegler-Nichols, Cohen-Coon, Astrom methods etc. For all these techniques, a simple limitation remained with the fact that for a particular system, there can be only one set of tuned parameters; i.e. there are no degrees of freedom involved to readjust the parameters for a given system to achieve, for instance, higher bandwidth. Another limitation in most cases is where a controller is designed in continuous time then converted into discrete-time for computer implementation. The drawback of this method is that some robustness due to phase and gain margin is lost in the process. In this work a method of tuning PID controllers using a loop-shaping approach has been developed where the bandwidth of the system can be chosen within an acceptable range. The loop-shaping is done against a Glover-McFarlane type ℋ∞ controller which is widely accepted as a robust control design method. The numerical computations are carried out entirely in discrete-time so there is no loss of robustness due to conversion and approximations near Nyquist frequencies. Some extra degrees of freedom owing to choice of bandwidth and capability of choosing loop-shapes are also involved and are discussed in detail. Finally, comparisons of this method against existing techniques for tuning PID controllers both in continuous and in discrete-time are shown. The results tell us that our design performs well for loop-shapes that are achievable through a PID controller.
ContributorsShafique, Md. Ashfaque Bin (Author) / Tsakalis, Konstantinos S. (Thesis advisor) / Rodriguez, Armando A. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2011
152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152317-Thumbnail Image.png
Description
Nuclear magnetic resonance (NMR) is an important phenomenon involving nuclear magnetic moments in magnetic field, which can provide much information about a wide range of materials, including their chemical composition, chemical environments and nuclear spin interactions. The NMR spectrometer has been extensively developed and used in many areas of research.

Nuclear magnetic resonance (NMR) is an important phenomenon involving nuclear magnetic moments in magnetic field, which can provide much information about a wide range of materials, including their chemical composition, chemical environments and nuclear spin interactions. The NMR spectrometer has been extensively developed and used in many areas of research. In this thesis, studies in two different areas using NMR are presented. First, a new kind of nanoparticle, Gd(DTPA) intercalated layered double hydroxide (LDH), has been successfully synthesized in the laboratory of Prof. Dey in SEMTE at ASU. In Chapter II, the NMR relaxation studies of two types of LDH (Mg, Al-LDH and Zn, Al-LDH) are presented and the results show that when they are intercalated with Gd(DTPA) they have a higher relaxivity than current commercial magnetic resonance imaging (MRI) contrast agents, such as DTPA in water solution. So this material may be useful as an MRI contrast agent. Several conditions were examined, such as nanoparticle size, pH and intercalation percentage, to determine the optimal relaxivity of this nanoparticle. Further NMR studies and simulations were conducted to provide an explanation for the high relaxivity. Second, fly ash is a kind of cementitious material, which has been of great interest because, when activated by an alkaline solution, it exhibits the capability for replacing ordinary Portland cement as a concrete binder. However, the reaction of activated fly ash is not fully understood. In chapter III, pore structure and NMR studies of activated fly ash using different activators, including NaOH and KOH (4M and 8M) and Na/K silicate, are presented. The pore structure, degree of order and proportion of different components in the reaction product were obtained, which reveal much about the reaction and makeup of the final product.
ContributorsPeng, Zihui (Author) / Marzke, Robert F (Thesis advisor) / Dey, Sandwip Kumar (Committee member) / Neithalath, Narayanan (Committee member) / Chamberlin, Ralph Vary (Committee member) / Mccartney, Martha Rogers (Committee member) / Arizona State University (Publisher)
Created2013
152330-Thumbnail Image.png
Description
This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle doesn't hit object in its path while going towards the goal. Three different techniques for obstacle avoidance which are useful for different kind of obstacles are described in the thesis. Matlab simulations are presented to show and discuss the three techniques. The controls discussed for the cartesian and posture stabilization were implemented on a low cost miniature vehicle to verify the results practically. The vehicle is described in the thesis in detail. The practical results are compared with the simulations. Hardware and matlab codes have been provided as a reference for the reader.
ContributorsChopra, Dhruv (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152334-Thumbnail Image.png
Description
This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy

This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy dissipation of the system is its fasteners (nails) which are not enough to dissipate energy leading to decreasing of structure's integrity. Moreover, wood shear walls could not sustain their stiffness after experiencing moderate wall drift which made them susceptible to strong aftershocks. Therefore, CarbonFlex shear wall system was proposed to be used in the wood-framed structures. Seven full-size CarbonFlex shear walls and a CarbonFlex wrapped structures were tested. The results were compared to those of conventional wood-framed shear walls and a wood structure. The comparisons indicated that CarbonFlex specimens could sustain their strength and fully recover their initial stiffness although they experienced four percent story drift while the stiffness of the conventional structure dramatically degraded. This indicated that CarbonFlex shear wall systems provided a better seismic protection to wood-framed structures. To evaluate capability of CarbonFlex to resist impact damages from wind-borne debris in tornadoes, several debris impact tests of CarbonFlex and a carbon fiber reinforced storm shelter's wall panels were conducted. The results showed that three CarbonFlex wall panels passed the test at the highest debris impact speed and the other two passed the test at the second highest speed while the carbon fiber panel failed both impact speeds.
ContributorsDhiradhamvit, Kittinan (Author) / Attard, Thomas L (Thesis advisor) / Fafitis, Apostolos (Thesis advisor) / Neithalath, Narayanan (Committee member) / Thomas, Benjamin (Committee member) / Arizona State University (Publisher)
Created2013