Matching Items (34)
132599-Thumbnail Image.png
Description
When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented

When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented in this paper reports and characterizes these faster growing colonies (revertants) in an attempt to dissect the mechanism by which they overcome the TonB deficiency. Genomic analysis revealed mutations in yejM, a putative inner-to-outer membrane cardiolipin transporter, which are responsible for the faster growth phenotype in a tonB mutant background. Further characterization of the revertants revealed that they display hypersensitivity to vancomycin, a large antibiotic that is normally precluded from entering E. coli cells, and leaked periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. In the absence of wild type tonB, however, the deletion of all known of cardiolipin synthase genes (clsABC) did not produce the phenotype similar to mutations in the yejM gene, suggesting the absence of cardiolipin from the outer membrane per se is not responsible for the increased outer membrane permeability. These data show that a defect in lipid biogenesis and transport can compromise outer membrane permeability barrier to allow siderophore intake and that YejM may have additional roles other than transporting cardiolipin.
ContributorsQiu, Nan (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Yu, Julian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132863-Thumbnail Image.png
Description
Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated with worsened clinical outcomes in CF patients, and unknown still are the mechanisms that cause an increase in patient morbidity

Pseudomonas aeruginosa and Staphylococcus aureus are two key opportunistic pathogens that cause chronic lung infections in cystic fibrosis (CF) patients. Polymicrobial infections with P. aeruginosa and S. aureus are associated with worsened clinical outcomes in CF patients, and unknown still are the mechanisms that cause an increase in patient morbidity and mortality. Studying the interactions between P. aeruginosa and S. aureus is difficult because when co-cultured in vitro, P. aeruginosa drastically outcompetes and eradicates S. aureus cultures. This study explores methods for growing planktonic co-cultures of P. aeruginosa and S. aureus to stationary phase in equal proportions, and this will allow for the examination of changes in quorum-regulated phenotypes.

We grew liquid co-cultures of P. aeruginosa and S. aureus in LB Lennox media and examined their absolute and relative cell densities by plating the co-cultures on selective media. We evaluated the influence of oxygen concentration and co-inoculation vs. staggered inoculation on the ability to achieve a co-cultures with two P. aeruginosa (PA) and two S. aureus (SA) strains. The method that consistently produced PA:SA ratios in the range of 1:1 to 1:100 was to allow a SA mono-culture to reach stationary phase, and then re-suspend the SA cells in fresh media before inoculating with PA. With this method, it is possible to grow both PA and SA to stationary phase, a necessity for studying how PA and SA alter phenotypes in the presence of one another.

P. aeruginosa was found to produce less pyocyanin in the presence of S. aureus, but reduction in pyocyanin expression was depended on the strain of S. aureus. Elastase production differed between the two P. aeruginosa strains as well as between the two S. aureus strains, one increasing and one decreasing in expression. This data indicates that the responses of P. aeruginosa to S. aureus differ depending on both the P. aeruginosa and S. aureus strain present.
ContributorsWest, Sarah Beth (Author) / Bean, Heather B. (Thesis director) / Misra, Rajeev (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133571-Thumbnail Image.png
Description
Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections, P. aeruginosa populations adapt genetically to the CF lung, selecting several important mutations required for long-term persistence. These genetic adaptations

Pseudomonas aeruginosa is a gram-negative bacterium and opportunistic pathogen that is the leading cause of chronic infection in the lungs of adults with cystic fibrosis (CF). During chronic lung infections, P. aeruginosa populations adapt genetically to the CF lung, selecting several important mutations required for long-term persistence. These genetic adaptations lead to phenotypic changes that are associated with the transition from early-stage to late-stage chronic CF infection.
The goal of this project was to develop tools for gene transfer between P. aeruginosa clinical isolates. These tools will allow shuffling of early/late stage of infection genes to restore wild-type phenotypes in late chronic infection isolates and create single-phenotype mutants in the early infection strains. This will allow isolation and investigation of single phenotypes in the clinical isolates to identify metabolic biomarkers specifically for detecting the target phenotypes.

The gene transfer mechanisms of transformation by electroporation, transformation by heat shock, and conjugation were tested using the plasmid pMQ30 with a construct to create an in-frame deletion of the rhlR gene (rhlR) via allelic exchange. The disruption of the P. aeruginosa wild-type rhlR gene leads to rhamnolipids-deficient mutant strains; therefore, rhamnolipids production was assessed to validate successful in-frame deletion of the rhlR gene in the P. aeruginosa clinical isolates and laboratory strains. Based on the efficiencies determined from the gene transfer mechanisms tested, the conjugation mechanism was determined to be the most efficient method for gene transfer in P. aeruginosa laboratory strains, and was used to investigate gene transfer in the P. aeruginosa clinical isolates.
ContributorsBhebhe, Charity Ntando (Author) / Bean, Heather (Thesis director) / Misra, Rajeev (Committee member) / Jenkins, Carrie (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134307-Thumbnail Image.png
Description
Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
ContributorsKiermayr, Jonathan Patrick (Author) / Bean, Heather (Thesis director) / Misra, Rajeev (Committee member) / Haydel, Shelley (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134996-Thumbnail Image.png
Description
Glioblastoma multiforme is the most common and aggressive primary malignant brain tumor in adults, exhibiting a median survival of only 15 months after diagnosis. A significant challenge in treating GBM is the ability of glioma cells to invade normal brain tissue, escape surgical resection, and resist radiotherapy and chemotherapy. We

Glioblastoma multiforme is the most common and aggressive primary malignant brain tumor in adults, exhibiting a median survival of only 15 months after diagnosis. A significant challenge in treating GBM is the ability of glioma cells to invade normal brain tissue, escape surgical resection, and resist radiotherapy and chemotherapy. We have previously demonstrated that the TWEAK-Fn14 signaling axis plays an important role in glioma cell invasion and discovered a small molecule, L524-0366, that specifically disrupts the TWEAK-Fn14 interaction. However, low affinity limits L524-0366’s clinical feasibility. By utilizing structure-activity relationship analyses of L524-0366, we identified additional small molecules that may inhibit TWEAK-Fn14 signaling. Here, we identify five additional novel Fn14 signaling inhibitors that specifically inhibited TWEAK-Fn14 NF-κB-dependent signaling and suppressed TWEAK-induced glioma cell migration. Furthermore, we demonstrate that two molecules exhibit improved affinity for Fn14, two molecules showed binding to the TWEAK ligand but not Fn14, and one showed no binding to either TWEAK or Fn14. These molecules will be further tested for in vitro and in vivo functionality, and serve as foundations for additional medicinal chemistry for drug modifications.
ContributorsMillard, Nghia Patrick (Author) / Misra, Rajeev (Thesis director) / Chang, Yung (Committee member) / Tran, Nhan (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from the periplasmic space and the outer leaflet of the inner

The spread of antibiotic resistant bacteria is currently a pressing global health concern, especially considering the prevalence of multi-drug resistance. Efflux pumps, bacterial machinery involved in various active transport functions, are capable of removing a broad range of antibiotics from the periplasmic space and the outer leaflet of the inner membrane, frequently conferring multi-drug resistance. Many aspects of efflux machinery’s structure, functions, and inter-protein interactions are still not fully understood; further characterization of these components of efflux will provide a strong foundation for combating this resistance mechanism. In this project, I further characterize the channel protein TolC as a part of the AcrAB-TolC efflux pump complex in Escherichia coli by first determining the specificity of compensatory mutations in TolC against defective AcrA and AcrB, and then identifying TolC residues that might influence TolC aperture dynamics or stability when altered. Specificity of compensatory mutations was determined using an array of TolC mutants, previously generated from defective AcrA or AcrB, against a different mutant AcrB protein; these new mutant combinations were then analyzed by real-time efflux and antibiotic susceptibility assays. A vancomycin susceptible TolC mutant—a phenotype that has been associated with constitutively open TolC channels—was then used to generate vancomycin-resistant revertants which were evaluated with DNA sequencing, protein quantification by Western blots, and real-time efflux assays to identify residues important for TolC aperture dynamics and protein stability and complex activity. Mutations identified in revertant strains corresponded to residues located in the lower half of the periplasmic domain of TolC; generally, these revertants had poorer efflux than wild-type TolC in the mutant AcrB background, and all revertants had poorer efflux activity than the parental mutant strain.
ContributorsMcFeely, Megan Elizabeth (Author) / Misra, Rajeev (Thesis director) / Haydel, Shelley (Committee member) / Stout, Valerie (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135365-Thumbnail Image.png
Description
This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore

This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore receptors that allow extracellular siderophores bound to iron to enter the cells to power various biological processes. Previous studies have shown that in E. coli cells that expressed a mutant allele of envZ, called envZ11, which led to altered expression of various iron genes including down regulation of fepA::lacZ. The wild type EnvZ/OmpR system is not considered to regulate iron genes, but because these envz11 strains had downregulated fepA::lacZ, this study was undertaken to understand the connection and mechanisms of this downregulation. A large number of Lac+ revertants were obtained from the B32-2483 strain (envz11 and fepA::lacZ) and 7 Lac+ revertants that had reversion mutations not directly correcting the envZ11 allele were further characterized. With P1 phage transduction genetic mapping that involved moving a kanamycin resistance marker linked to fepA::lacZ, two Lac+ revertants were found to have their reversion mutations in the fepA promoter region, while the other five revertants had their mutations mapping outside the fepA region. These two revertants underwent DNA sequencing and found to carry two different single base pair mutations in two different locations of the fepA promoter region. Each one is in the Fur repressor binding region, but one also may have affected the Shine-Dalgarno region involved in translation initiation. All 7 reveratants underwent beta-galactosidase assays to measure fepA::lacZ expression. The two revertants that had mutations in the fepA promoter region had significantly increased fepA activity, with the revertant with the Shine-Dalgarno mutation having the most elevated fepA expression. The other 5 revertants that did not map in the fepA region had fepA expression elevated to the same level as that found in the wild type EnvZ/OmpR background. The data suggest that the negative effect of envZ11 can be overcome by multiple mechanisms, including directly correcting the envZ11 allele or changing the fepA promoter region.
ContributorsKalinkin, Victor Arkady (Co-author) / Misra, Rajeev (Co-author, Thesis director) / Mason, Hugh (Committee member) / Foy, Joseph (Committee member) / Biomedical Informatics Program (Contributor) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134816-Thumbnail Image.png
Description
Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis (CF). Then, as lung infections become chronic, P. aeruginosa tends to down-regulate pyocyanin production. The effects of environmental conditions, particularly

Pyocyanin is a pigment produced by Pseudomonas aeruginosa that acts as a virulence factor in helping this pathogen to establish chronic infection in the lungs of persons with cystic fibrosis (CF). Then, as lung infections become chronic, P. aeruginosa tends to down-regulate pyocyanin production. The effects of environmental conditions, particularly temperature change, on pyocyanin production in P. aeruginosa has not been widely studied in the past. The goals of this project were twofold: First, we aim to identify how environmental conditions potentially present in the CF lungs affect pyocyanin pigment production in P. aeruginosa. Second, through the examination of effects of environmental changes, we aim to identify methods to modulate phenotypes of P. aeruginosa in order to identify putative biomarkers through metabolic analysis. This paper also identifies a newly derived pyocyanin culturing and extraction procedure that yields increased sensitivity for pyocyanin detection.
Through a liquid-liquid extraction procedure, pyocyanin was quantified in cultures that were incubated at 30°C, 37°C, and 40°C and in the presence of Staphylococcus aureus spent media. In addition, culturing methods for the measurement of pyocyanin under hypoxic conditions were analyzed. I hypothesized that environmental conditions such as temperature, co-infection with S. aureus, and oxygen depletion would influence pyocyanin production. It was found that overall, 30°C incubation produced statistically significant decrease in pyocyanin production compared with incubation at 37°C. These findings will help to determine how phenotypes are affected by conditions in the CF lung. In addition, these conclusions will help direct metabolic analysis and to identify volatile biomarkers of pyocyanin production for future use in breath-based diagnostics of CF lung infections.
ContributorsWitzel, Lea (Co-author) / Bean, Heather D. (Co-author, Thesis director) / Misra, Rajeev (Committee member) / Haydel, Shelley (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
190834-Thumbnail Image.png
Description
The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation

The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation of individual FOF1 were observed to measure transient dwells (TDs). TDs occur when the FO momentarily halts the ATP hydrolysis rotation by the F1-ATPase. The work presented here showed increasing TDs with decreasing pH, with calculated pKa values of 5.6 and 7.5 for wild-type (WT) Escherichia coli (E. coli) subunit-a proton input and output half-channels, respectively. This is consistent with the conclusion that the periplasmic proton half-channel is more easily protonated than the cytoplasmic half-channel. Mutation in one proton half-channel affected the pKa values of both half-channels, suggesting that protons flow through the FO motor via the Grotthuss mechanism. The data revealed that 36° stepping of the E. coli FO subunit-c ring during ATP synthesis consists of an 11° step caused by proton translocations between subunit-a and the c-ring, and a 25° step caused by the electrostatic interaction between the unprotonated c-subunit and the aR210 residue in subunit-a. The occurrence of TDs fit to the sum of three Gaussian curves, which suggested that the asymmetry between the FO and F1 motors play a role in the mechanism behind the FOF1 rotation. Replacing the inner (N-terminal) helix of E. coli c10-ring with sequences derived from c8 to c17-ring sequences showed expression and full assembly of FOF1. Decrease in anticipated c-ring size resulted in increased ATP synthesis activity, while increase in c-ring size resulted in decreased ATP synthesis activity, loss of Δψ-dependence to synthesize ATP, decreased ATP hydrolysis activity, and decreased ACMA quenching activity. Low levels of ATP synthesis by the c12 and c15-ring chimeras are consistent with the role of the asymmetry between the FO and F1 motors that affects ATP synthesis rotation. Lack of a major trend in succinate-dependent growth rates of the chimeric E. coli suggest cellular mechanisms that compensates for the c-ring modification.
ContributorsYanagisawa, Seiga (Author) / Frasch, Wayne D (Thesis advisor) / Misra, Rajeev (Committee member) / Redding, Kevin (Committee member) / Singharoy, Abhishek (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023