Matching Items (157)
161425-Thumbnail Image.png
Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
ContributorsGharat, Shubham Shriniwas (Author) / McDaniel, Troy (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
129328-Thumbnail Image.png
Description

Owing to the suprasegmental behavior of emotional speech, turn-level features have demonstrated a better success than frame-level features for recognition-related tasks. Conventionally, such features are obtained via a brute-force collection of statistics over frames, thereby losing important local information in the process which affects the performance. To overcome these limitations,

Owing to the suprasegmental behavior of emotional speech, turn-level features have demonstrated a better success than frame-level features for recognition-related tasks. Conventionally, such features are obtained via a brute-force collection of statistics over frames, thereby losing important local information in the process which affects the performance. To overcome these limitations, a novel feature extraction approach using latent topic models (LTMs) is presented in this study. Speech is assumed to comprise of a mixture of emotion-specific topics, where the latter capture emotionally salient information from the co-occurrences of frame-level acoustic features and yield better descriptors. Specifically, a supervised replicated softmax model (sRSM), based on restricted Boltzmann machines and distributed representations, is proposed to learn naturally discriminative topics. The proposed features are evaluated for the recognition of categorical or continuous emotional attributes via within and cross-corpus experiments conducted over acted and spontaneous expressions. In a within-corpus scenario, sRSM outperforms competing LTMs, while obtaining a significant improvement of 16.75% over popular statistics-based turn-level features for valence-based classification, which is considered to be a difficult task using only speech. Further analyses with respect to the turn duration show that the improvement is even more significant, 35%, on longer turns (>6 s), which is highly desirable for current turn-based practices. In a cross-corpus scenario, two novel adaptation-based approaches, instance selection, and weight regularization are proposed to reduce the inherent bias due to varying annotation procedures and cultural perceptions across databases. Experimental results indicate a natural, yet less severe, deterioration in performance - only 2.6% and 2.7%, thereby highlighting the generalization ability of the proposed features.

ContributorsShah, Mohit (Author) / Chakrabarti, Chaitali (Author) / Spanias, Andreas (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-25
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
154587-Thumbnail Image.png
Description
Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric

Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric model fits the data, non-parametric density estimation is used. In statistical signal processing applications, Gaussianity is usually assumed since closed-form expressions for common divergence measures have been derived for this family of distributions. Parametric assumptions are preferred when it is known that the data follows the model, however this is rarely the case in real-word scenarios. Non-parametric density estimators are characterized by a very large number of parameters that have to be tuned with costly cross-validation. In this dissertation we focus on a specific family of non-parametric estimators, called direct estimators, that bypass density estimation completely and directly estimate the quantity of interest from the data. We introduce a new divergence measure, the $D_p$-divergence, that can be estimated directly from samples without parametric assumptions on the distribution. We show that the $D_p$-divergence bounds the binary, cross-domain, and multi-class Bayes error rates and, in certain cases, provides provably tighter bounds than the Hellinger divergence. In addition, we also propose a new methodology that allows the experimenter to construct direct estimators for existing divergence measures or to construct new divergence measures with custom properties that are tailored to the application. To examine the practical efficacy of these new methods, we evaluate them in a statistical learning framework on a series of real-world data science problems involving speech-based monitoring of neuro-motor disorders.
ContributorsWisler, Alan (Author) / Berisha, Visar (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Liss, Julie (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017
147596-Thumbnail Image.png
Description

The increasing demand for clean energy solutions requires more than just expansion, but also improvements in the efficiency of renewable sources, such as solar. This requires analytics for each panel regarding voltage, current, temperature, and irradiance. This project involves the development of machine learning algorithms along with a data logger

The increasing demand for clean energy solutions requires more than just expansion, but also improvements in the efficiency of renewable sources, such as solar. This requires analytics for each panel regarding voltage, current, temperature, and irradiance. This project involves the development of machine learning algorithms along with a data logger for the purpose of photovoltaic (PV) monitoring and control. Machine learning is used for fault classification. Once a fault is detected, the system can change its reconfiguration to minimize the power losses. Accuracy in the fault detection was demonstrated to be at a level over 90% and topology reconfiguration showed to increase power output by as much as 5%.

ContributorsNavas, John (Author) / Spanias, Andreas (Thesis director) / Rao, Sunil (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
155381-Thumbnail Image.png
Description
Distributed wireless sensor networks (WSNs) have attracted researchers recently due to their advantages such as low power consumption, scalability and robustness to link failures. In sensor networks with no fusion center, consensus is a process where

all the sensors in the network achieve global agreement using only local transmissions. In this

Distributed wireless sensor networks (WSNs) have attracted researchers recently due to their advantages such as low power consumption, scalability and robustness to link failures. In sensor networks with no fusion center, consensus is a process where

all the sensors in the network achieve global agreement using only local transmissions. In this dissertation, several consensus and consensus-based algorithms in WSNs are studied.

Firstly, a distributed consensus algorithm for estimating the maximum and minimum value of the initial measurements in a sensor network in the presence of communication noise is proposed. In the proposed algorithm, a soft-max approximation together with a non-linear average consensus algorithm is used. A design parameter controls the trade-off between the soft-max error and convergence speed. An analysis of this trade-off gives guidelines towards how to choose the design parameter for the max estimate. It is also shown that if some prior knowledge of the initial measurements is available, the consensus process can be accelerated.

Secondly, a distributed system size estimation algorithm is proposed. The proposed algorithm is based on distributed average consensus and L2 norm estimation. Different sources of error are explicitly discussed, and the distribution of the final estimate is derived. The CRBs for system size estimator with average and max consensus strategies are also considered, and different consensus based system size estimation approaches are compared.

Then, a consensus-based network center and radius estimation algorithm is described. The center localization problem is formulated as a convex optimization problem with a summation form by using soft-max approximation with exponential functions. Distributed optimization methods such as stochastic gradient descent and diffusion adaptation are used to estimate the center. Then, max consensus is used to compute the radius of the network area.

Finally, two average consensus based distributed estimation algorithms are introduced: distributed degree distribution estimation algorithm and algorithm for tracking the dynamics of the desired parameter. Simulation results for all proposed algorithms are provided.
ContributorsZhang, Sai (Electrical engineer) (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017