Matching Items (177)
148314-Thumbnail Image.png
Description

An in depth look at the rhetoric behind the campus carry debate at the University of Texas at Austin. This thesis researched and examined primary sources from The Daily Texan and The Austin-American Statesman attempting to analyze what was at stake for both sides of the argument and what the

An in depth look at the rhetoric behind the campus carry debate at the University of Texas at Austin. This thesis researched and examined primary sources from The Daily Texan and The Austin-American Statesman attempting to analyze what was at stake for both sides of the argument and what the most effective rhetorical tool was.

ContributorsBlumstein, Cory Joshua (Author) / Young, Alexander (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Public Affairs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Backcountry Broadcasts is a multimedia project that aims to empower women in the great outdoors. This platform serves to inspire, encourage and appreciate women in the wilderness through photography, personal stories and more. Through our passion for the outdoors, we're incorporating our own female experience with the voices of others

Backcountry Broadcasts is a multimedia project that aims to empower women in the great outdoors. This platform serves to inspire, encourage and appreciate women in the wilderness through photography, personal stories and more. Through our passion for the outdoors, we're incorporating our own female experience with the voices of others to bring light to the importance of gender inclusivity in the backcountry.

ContributorsPearce, Kyla Annika (Co-author) / Nardizzi, Ariella (Co-author) / Santos, Fernanda (Thesis director) / Babits, Sadie (Committee member) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / The Sidney Poitier New American Film School (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147911-Thumbnail Image.png
Description

In a COVID-19 world, student engagement has suffered drastically as organizations and universities shifted to an online format. Yet, there is still an opportunity and a space for digital content creation to bridge the gap in a virtual and hybrid university lifestyle. This project looks at how student groups can

In a COVID-19 world, student engagement has suffered drastically as organizations and universities shifted to an online format. Yet, there is still an opportunity and a space for digital content creation to bridge the gap in a virtual and hybrid university lifestyle. This project looks at how student groups can still engage students at ASU Tempe through digital content creation and which tools to use to enter the space.

ContributorsJavangula, Rahul (Author) / O'Flaherty, Katherine (Thesis director) / Shipley, Austen (Committee member) / Watts College of Public Service & Community Solut (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project is a series of two YouTube videos that follow me learning new skills. The first is soldering, and the second is jumping a bicycle. The goal of this project is to use it to hone my cinematography skills and to inspire other beginners to try new things by

This project is a series of two YouTube videos that follow me learning new skills. The first is soldering, and the second is jumping a bicycle. The goal of this project is to use it to hone my cinematography skills and to inspire other beginners to try new things by highlighting my own trials and tribulations and being vulnerable.

ContributorsNicholls, Joseph Kenji (Author) / Nascimento, Eliciana (Thesis director) / Meirelles, Rodrigo (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
130912-Thumbnail Image.png
Description
Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial intelligence is a growing field that seeks to solve problems

Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial intelligence is a growing field that seeks to solve problems by simulating
learning in specific environments. The aim of this paper is to explore the applications that the
self play learning branch of artificial intelligence may pose on game development in the future,
and to attempt to implement a working version of a self play agent learning to play a Pokemon
battle. Originally designed Pokemon battle behavior is often suboptimal, getting stuck making
ineffective or incorrect choices, so training a self play model to learn the strategy and structure of
Pokemon battles from a clean slate would result in an organic agent that would outperform the
original behavior of the computer controlled agents. Though unsuccessful in my implementation,
this paper serves as a record of the exploration of this field, and a log of what worked and what
did not, in order to benefit any future person interested in the same topics.
ContributorsCiudad, Erick Marcel (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131363-Thumbnail Image.png
Description
Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be pulled from Twitter—and the movement of the stock market. One

Behavioral economics suggests that emotions can affect an individual’s decision making. Recent research on this idea’s application on large societies hints that there may exist some correlation or maybe even some causation relationship between public sentiment—at least what can be pulled from Twitter—and the movement of the stock market. One major result of consistent research on whether or not public sentiment can predict the movement of the stock market is that public sentiment, as a feature, is becoming more and more valid as a variable for stock-market-based machine learning models. While raw values typically serve as invaluable points of data, when training a model, many choose to “engineer” new features for their models—deriving rates of change or range values to improve model accuracy.
Since it doesn’t hurt to attempt to utilize feature extracted values to improve a model (if things don’t work out, one can always use their original features), the question may arise: how could the results of feature extraction on values such as sentiment affect a model’s ability to predict the movement of the stock market? This paper attempts to shine some light on to what the answer could be by deriving TextBlob sentiment values from Twitter data, and using Granger Causality Tests and logistic and linear regression to test if there exist a correlation or causation between the stock market and features extracted from public sentiment.
ContributorsYu, James (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
As modern advancements in medical technology continue to increase overall life expectancy, hospitals and healthcare systems are finding new and more efficient ways of storing extensive amounts of patient healthcare information. This progression finds people increasingly dependent on hospitals as the primary providers of medical data, ranging from immunization records

As modern advancements in medical technology continue to increase overall life expectancy, hospitals and healthcare systems are finding new and more efficient ways of storing extensive amounts of patient healthcare information. This progression finds people increasingly dependent on hospitals as the primary providers of medical data, ranging from immunization records to surgical history. However, the benefits of carrying a copy of personal health information are becoming increasingly evident. This project aims to create a simple, secure, and cohesive application that stores and retrieves user health information backed by Google’s Firebase cloud infrastructure. Data was collected to both explore the current need for such an application, and to test the usability of the product. The former was done using a multiple-choice survey distributed through social media to understand the necessity for a patient-held health file (PHF). Subsequently, user testing was performed with the intent to track the success of our application in meeting those needs. According to the data, there was a trend that suggested a significant need for a healthcare information storage device. This application, allowing for efficient and simple medical information storage and retrieval, was created for a target audience of those seeking to improve their medical information awareness, with a primary focus on the elderly population. Specific correlations between the frequency of physician visits and app usage were identified to target the potential use cases of our app. The outcome of this project succeeded in meeting the significant need for increased patient medical awareness in the healthcare community.
ContributorsUpponi, Rohan Sachin (Co-author) / Somayaji, Vasishta (Co-author) / McDaniel, Troy (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132414-Thumbnail Image.png
Description
A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of

A common design of multi-agent robotic systems requires a centralized master node, which coordinates the actions of all the agents. The multi-agent system designed in this project enables coordination between the robots and reduces the dependence on a single node in the system. This design change reduces the complexity of the central node, and makes the system more adaptable to changes in its topology. The final goal of this project was to have a group of robots collaboratively claim positions in pre-defined formations, and navigate to the position using pose data transmitted by a localization server.
Planning coordination between robots in a multi-agent system requires each robot to know the position of the other robots. To address this, the localization server tracked visual fiducial markers attached to the robots and relayed their pose to every robot at a rate of 20Hz using the MQTT communication protocol. The robots used this data to inform a potential fields path planning algorithm and navigate to their target position.
This project was unable to address all of the challenges facing true distributed multi-agent coordination and needed to make concessions in order to meet deadlines. Further research would focus on shoring up these deficiencies and developing a more robust system.
ContributorsThibeault, Quinn (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131390-Thumbnail Image.png
Description
For our creative project, we initially wanted to work on a web application that would allow people with busy schedules to easily create and share events while also discovering other events that may interest them. With that in mind, we created the Group Event Planner App, a full stack project

For our creative project, we initially wanted to work on a web application that would allow people with busy schedules to easily create and share events while also discovering other events that may interest them. With that in mind, we created the Group Event Planner App, a full stack project that lays down a foundation for all of our goals while focusing primarily on the proposed recommendation algorithms that enable its users to discover events that are likely to pique their interest. The development of our recommendation algorithms took inspiration from existing implementations, such as those at Amazon, YouTube, and Netflix, and resulted in a creative amalgamation.
ContributorsRussell, Preston (Co-author) / Sonnier, Connor (Co-author) / Chen, Yinong (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05