Matching Items (14)
Description
Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest at the cellular level in cytostructural and protein expression (functional) features which can be resolved, captured and quantified in 3D

Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest at the cellular level in cytostructural and protein expression (functional) features which can be resolved, captured and quantified in 3D far more sensitively and specifically than in traditional 2D microscopy. Live single cells were rotated about an axis perpendicular to the optical axis to facilitate data acquisition for functional live cell CT imaging. The goal of this thesis research was to optimize and characterize the microvortex rotation chip. Initial efforts concentrated on optimizing the microfabrication process in terms of time (6-8 hours v/s 12-16 hours), yield (100% v/s 40-60%) and ease of repeatability. This was done using a tilted exposure lithography technique, as opposed to the backside diffuser photolithography (BDPL) method used previously (Myers 2012) (Chang and Yoon 2004). The fabrication parameters for the earlier BDPL technique were also optimized so as to improve its reliability. A new, PDMS to PDMS demolding process (soft lithography) was implemented, greatly improving flexibility in terms of demolding and improving the yield to 100%, up from 20-40%. A new pump and flow sensor assembly was specified, tested, procured and set up, allowing for both pressure-control and flow-control (feedback-control) modes; all the while retaining the best features of a previous, purpose-built pump assembly. Pilot experiments were performed to obtain the flow rate regime required for cell rotation. These experiments also allowed for the determination of optimal trapezoidal neck widths (opening to the main flow channel) to be used for cell rotation characterization. The optimal optical trap forces were experimentally estimated in order to minimize the required optical power incident on the cell. Finally, the relationships between (main channel) flow rates and cell rotation rates were quantified for different trapezoidal chamber dimensions, and at predetermined constant values of laser trapping strengths, allowing for parametric characterization of the system.
ContributorsShetty, Rishabh M (Author) / Meldrum, Deirdre R (Thesis advisor) / Johnson, Roger H (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2013
154363-Thumbnail Image.png
Description
Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.
ContributorsGrandhi, Taraka Sai Pavan (Author) / Rege, Kaushal (Thesis advisor) / Meldrum, Deirdre R (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Caplan, Michael (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2016
128517-Thumbnail Image.png
Description

Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells.

Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.

ContributorsKelbauskas, Laimonas (Author) / Ashili, Shashaanka (Author) / Zeng, Jia (Author) / Rezaie, Aida (Author) / Lee, Kristen (Author) / Derkach, Dmitry (Author) / Ueberroth, Benjamin (Author) / Gao, Weimin (Author) / Paulson, T. (Author) / Wang, Hong (Author) / Tian, Yanqing (Author) / Smith, Dean (Author) / Reid, B. (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-03-16
128496-Thumbnail Image.png
Description

In carcinogenesis, intercellular interactions within and between cell types are critical but remain poorly understood. We present a study on intercellular interactions between normal and premalignant epithelial cells and their functional relevance in the context of premalignant to malignant progression in Barrett’s esophagus. Using whole transcriptome profiling we found that

In carcinogenesis, intercellular interactions within and between cell types are critical but remain poorly understood. We present a study on intercellular interactions between normal and premalignant epithelial cells and their functional relevance in the context of premalignant to malignant progression in Barrett’s esophagus. Using whole transcriptome profiling we found that in the presence of normal epithelial cells, dysplastic cells but not normal cells, exhibit marked down-regulation of a number of key signaling pathways, including the transforming growth factor beta (TGFβ) and epithelial growth factor (EGF). Functional assays revealed both cell types showed repressed proliferation and significant changes in motility (speed, displacement and directionality) as a result of interactions between the two cell types. Cellular interactions appear to be mediated through both direct cell-cell contact and secreted ligands. The findings of this study are important in that they reveal, for the first time, the effects of cellular communication on gene expression and cellular function between premalignant (dysplastic) epithelial cells and their normal counterparts.

ContributorsZeng, Jia (Author) / Kelbauskas, Laimonas (Author) / Rezaie, Aida (Author) / Lee, Kristen (Author) / Ueberroth, Benjamin (Author) / Gao, Weimin (Author) / Derkach, Dmitry (Author) / Tran, Thai (Author) / Smith, Dean (Author) / Bussey, Kimberly (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2016-10-12