Matching Items (8)
Filtering by

Clear all filters

136646-Thumbnail Image.png
Description
The giant green sea anemone, Anthopleura xanthogrammica, hosts two different endosymbiotic algae. One is a unicellular chlorophyte, Elliptochloris marina; the other is Symbiodinium muscatinei, a dinoflagellate. Hosting these different symbionts influences the life history strategy of A. xanthogrammica's congener A. elegantissima, directly impacting its reproductive strategy (asexual vs. sexual). My

The giant green sea anemone, Anthopleura xanthogrammica, hosts two different endosymbiotic algae. One is a unicellular chlorophyte, Elliptochloris marina; the other is Symbiodinium muscatinei, a dinoflagellate. Hosting these different symbionts influences the life history strategy of A. xanthogrammica's congener A. elegantissima, directly impacting its reproductive strategy (asexual vs. sexual). My study sought to examine whether the type and density of symbiont also affects the reproductive condition of A. xanthogrammica, which reproduces only sexually. Gonad development was measured in anemones from Slip Point, Clallam Bay, WA and Tongue Point, WA along with symbiont type and density per mg of anemone protein. The results indicate a trend towards brown anemones having more developed gonads, especially in males. This may mean that A. xanthogrammica anemones that host zooxanthellae are more reproductively fit than zoochlorellate anemones. Thus, it may be favorable for anemones to host zooxanthellae. This is especially true in summer months when the high temperatures and mid-day low tides coincide with the period of most rapid gonad development.
ContributorsGasbarro, Ryan Patrick (Author) / Neuer, Susanne (Thesis director) / Rutowski, Ronald (Committee member) / Bingham, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137539-Thumbnail Image.png
Description
The phytoplankton communities in the open oceans are dominated by picophytoplankton (0.7-2µm) and nanophytoplankton (3-5µm). Studying the community dynamics of these phytoplankton is important to learn about their role in the carbon cycle and food web of the oceans. Dilution experiments were used, along with microscopy and molecular

The phytoplankton communities in the open oceans are dominated by picophytoplankton (0.7-2µm) and nanophytoplankton (3-5µm). Studying the community dynamics of these phytoplankton is important to learn about their role in the carbon cycle and food web of the oceans. Dilution experiments were used, along with microscopy and molecular techniques, to determine abundance, biomass and phytoplankton growth and grazing rates in the oligotrophic Sargasso Sea (western North Atlantic subtropical gyre) around the Bermuda Atlantic Time Series Station (BATS) in the summer of 2012. With low biomass and chlorophyll a, the Sargasso Sea appears to be unproductive at first glance, but I found that pico- and nanophytoplankton have high instantaneous growth rates that are balanced by the high grazing rates of microzooplankton.
Mesoscale eddies are important features in the Sargasso Sea that can increase or decrease the available nutrients in the euphotic zone. Two different mesoscale eddies were sampled: an anti-cyclonic eddy and the BATS station which was located at the edge of a cyclonic eddy. The results indicated that BATS had overall higher instantaneous growth (µ between 0.1 d-1 and 3.7 d-1) and grazing rates on pico- and nanophytoplankton, as well as diatoms, compared to the anti-cyclonic eddy (µ between 0.2 d-1 and 3 d-1). I also determined taxon-specific rates using quantitative polymerase chain reaction (qPCR) for the order Mamiellales, one of the smallest representatives of the abundant prasinophytes. This method yielded surprisingly high growth (9.7 d-1 ) and grazing rates (-8.2 d-1) at 80m for BATS. The euphotic zone (~100m) integrated biomass of all phytoplankton did not vary significantly between BATS (379 mg C m-2) and the anti-cyclonic eddy (408 mg C m-2) and the net growth rates at both locations were very close to zero for most of the groups. Although the biomass and net growth rates did not vary greatly between the two locations, the high instantaneous growth and grazing rates of pico- and nano-eukaryotic phytoplankton indicate an increase in the rate of the marine microbial food web, or microbial loop, compared to the anti-cyclonic eddy. This could have been due to the input of new nutrients in the edge of the cyclonic eddy at BATS. Thus, my study suggests that mesoscale variability is of considerable importance for the dynamics of the phytoplankton community and their role in the microbial loop. Much can be learned when using DNA based taxon-specific rates, especially to understand the relative importance and contribution of specific taxa.
More taxon-specific molecular studies will have to be carried out to quantify specific rates of more phytoplankton groups, which will supply a more complete knowledge of phytoplankton community dynamics in the Sargasso Sea. This will increase our understanding of the role of specific groups to the biological carbon dynamics in the euphotic zone into the deep ocean.
ContributorsHamill, Demetra Scott (Author) / Neuer, Susanne (Thesis director) / Elser, Jim (Committee member) / De Martini, Francesca (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
Description

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with roughly 4.6 percent being endemic. Minimal knowledge of these ecosystems existed until the 1940’s, when the renowned author John Steinbeck accompanied marine biologist Edward Ricketts on an expedition with the purpose of documenting the biodiversity of the Sea of Cortez. Today, the majority of research in the Northern Gulf of California is directed by CEDO, the Intercultural Center for the Study of Deserts and Oceans. The purpose of this project is to compile a literature review of research on the intertidal areas of the Northern Gulf and produce an illustrated brochure that educates beach visitors on local biodiversity as a collaboration with CEDO and the Clean Beaches Committee of Puerto Peñasco. This brochure aims to increase respect and appreciation for these species, as increased tourism over the past few decades has led to detrimental effects on the ecosystem. Additionally, it serves to promote the success of the Blue Flag certification of El Mirador beach in front of Manny’s Beach Club.

ContributorsPotter, Jessica Noel (Co-author) / Potter, Jessica (Co-author) / Neuer, Susanne (Thesis director) / Mangin, Katrina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147706-Thumbnail Image.png
Description

The biological carbon pump acts as part of the global carbon cycle through the photosynthetic fixation of inorganic carbon into dissolved and particulate organic carbon by phytoplankton. Previously, the biological carbon pump was attributed to large aggregates and zooplankton fecal pellets since their size and density results in faster sinking

The biological carbon pump acts as part of the global carbon cycle through the photosynthetic fixation of inorganic carbon into dissolved and particulate organic carbon by phytoplankton. Previously, the biological carbon pump was attributed to large aggregates and zooplankton fecal pellets since their size and density results in faster sinking rates, efficiently exporting organic carbon to deeper depths in the ocean. However, recent studies have indicated that small cells, known as picoplankton, contribute significantly to the formation of sinking particles. The presence of exopolymeric substances (EPS), among them sticky transparent exopolymeric particles (TEP) and proteinaceous coomassie stainable particles (CSP), serve as influential factors of export flux and aggregation. The presence of heterotrophic bacteria can also affect aggregation and sinking velocity, as seen in previous studies, and is likely attributed to their EPS and TEP production. The staining and visualization of TEP and CSP allow for the qualitative determination of these types of EPS from bacteria isolated from sinking particles collected with particle interceptor traps at various depths in the Sargasso Sea. I study the presence of TEP and CSP in particle-associated bacteria. Cultures of picocyanobacteria, consisting of xenic Synechococcus and axenic Prochlorococcus, were used to establish positive and negative controls for stained isolate analysis. Marinobacter adhaerens served as a tertiary control for an axenic culture that stains positive for TEP. I chose six isolates of bacteria isolated from sinking particles to be stained and visualized to test for the secretion of TEP and CSP. Four of the isolates stained positive for both TEP and CSP, including Pseudoalteromonas sp., Erythrobacter sp., and Marinobacter sp., while one isolate, Micrococcus sp., stained positive only for TEP, and the last isolate, another Marinobacter sp., stained positive for only CSP. These results are important in understanding the role of plankton organisms in the formation of sinking particles.

ContributorsLivar, Britni (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132389-Thumbnail Image.png
Description
Prochlorococcus marinus (MED4), a genus of marine picocyanobacteria that proliferates in open oligotrophic ocean, is one of the most abundant photosynthetic microbes in the world, estimated to contribute up to 10% of the ocean’s primary production. The productivity of these microorganisms is controlled by macronutrient availability in the surface waters.

Prochlorococcus marinus (MED4), a genus of marine picocyanobacteria that proliferates in open oligotrophic ocean, is one of the most abundant photosynthetic microbes in the world, estimated to contribute up to 10% of the ocean’s primary production. The productivity of these microorganisms is controlled by macronutrient availability in the surface waters. The ratio of macronutrients in the ocean was defined, by Alfred Redfield, as an elemental ratio of 106C:16N:1P. However, the C:N:P ratio varies based on region, season, temperature and irradiance, as well as the composition of the primary producers. In oligotrophic gyres, these nutrient ratios are elevated from the Redfield stoichiometry, but whether this ratio exerts influence on the growth rate of the organism has not been investigated. Elemental stoichiometry of available nutrients can affect the aggregation of organic carbon and exportation of the particles to the ocean depths. The purpose of this study was to investigate the effects of nutrient limitation on aggregation and transparent exopolymeric particle (TEP) production which aids in aggregation. My findings suggested that nutrient limitation reduces TEP production and does not increase aggregate volume concentration. With continued warming, certain regions of the ocean will become more oligotrophic, which further decreases the nutrient supply available for Prochlorococcus. My research shows that this could lead to decreased exportation of organic carbon matter to the depths of the sea.
ContributorsRoy, Kevin Thomas (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131458-Thumbnail Image.png
Description
The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary

The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary autotroph in increasingly warmer and nutrient poor oceans. This aggregation, believed to be mediated through the secretion of sticky Transparent Exopolymeric Substances (TEP), might be key for Prochlorococcus to sink throughout the ocean and serve as a source of carbon to other communities within its environment. Considering the relatively low concentration of TEP secreted by Prochlorococcus when on its own, this study explored the synergistic effect that heterotrophic bacteria and inorganic minerals in the surrounding seawater may have on the aggregation of P. marinus. This was done by inoculating P. marinus and the model heterotroph Marinobacter adhaerens HP15 individually and mixed in cylindrical roller tanks with the addition of ballasting clay minerals into roller tanks to simulate constant sinking for 7 days. The aggregates which formed after rolling were quantified and their sinking velocities and excess densities were measured. Our results indicate that the most numerous and densest aggregates formed when Prochlorococcus was in the presence of both M. adhaerens and kaolinite clay particles. I will discuss how methodology, particularly cell number, may play a role in the enhanced aggregation that I found when Prochlorococcus was cultured together with the Marinobacter.
ContributorsAouad, Samer Ghassan (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05