Matching Items (1,594)
Filtering by

Clear all filters

152090-Thumbnail Image.png
Description
Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy

Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy in the form of a fuel via systems capable of carrying out photo-induced electron transfer to drive the production of hydrogen from water. Herein is detailed progress in using photo-induced stepwise electron transfer to drive the oxidation of water and reduction of protons to hydrogen. In the design, use of more blue absorbing porphyrin dyes to generate high-potential intermediates for oxidizing water and more red absorbing phthalocyanine dyes for forming the low potential charge needed for the production of hydrogen have been utilized. For investigating water oxidation at the photoanode, high potential porphyrins such as, bis-pyridyl porphyrins and pentafluorophenyl porphyrins have been synthesized and experiments have aimed at the co-immobilization of this dye with an IrO2-nH2O catalyst on TiO2. To drive the cathodic reaction of the water splitting photoelectrochemical cell, utilization of silicon octabutoxy-phthalocyanines have been explored, as they offer good absorption in the red to near infrared, coupled with low potential photo-excited states. Axially and peripherally substituted phthalocyanines bearing carboxylic anchoring groups for the immobilization on semiconductors such as TiO2 has been investigated. Ultimately, this work should culminate in a photoelectrochemical cell capable of splitting water to oxygen and hydrogen with the only energy input from light. A series of perylene dyes bearing multiple semi-conducting metal oxide anchoring groups have been synthesized and studied. Results have shown interfacial electron transfer between these perylenes and TiO2 nanoparticles encapsulated within reverse micelles and naked nanoparticles. The binding process was followed by monitoring the hypsochromic shift of the dye absorption spectra over time. Photoinduced electron transfer from the singlet excited state of the perylenes to the TiO2 conduction band is indicated by emission quenching of the TiO2-bound form of the dyes and confirmed by transient absorption measurements of the radical cation of the dyes and free carriers (injected electrons) in the TiO2.
ContributorsBergkamp, Jesse J (Author) / Moore, Ana L (Thesis advisor) / Mariño-Ochoa, Ernesto (Thesis advisor) / Gust, Devens J (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152655-Thumbnail Image.png
Description
Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into

Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both advancing the knowledge about natural photosynthesis and for the future design of new molecules for WSDSPETCs.
ContributorsMéndez-Hernández, Dalvin D (Author) / Moore, Ana L (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, Devens J. (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152279-Thumbnail Image.png
Description
Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes

Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes have been reported previously. All of the early events in natural photosynthesis responsible for the conversion of solar energy to electric potential energy occur within proteins and phospholipid membranes that act as scaffolds for arranging the active chromophores. Accordingly, for creating artificial photovoltaic (PV) systems, scaffolds are required to imbue structure to the systems. An approach to incorporating modular design into solid-state organic mimics of the natural system is presented together with how conductive scaffolds can be utilized in organic PV systems. To support the chromophore arrays present within this design and to extract separated charges from within the structure, linear pyrazine-containing molecular ribbons were chosen as candidates for forming conductive linear scaffolds that could be functionalized orthogonally to the linear axis. A series of donor-wire-acceptor (D-W-A) compounds employing porphyrins as the donors and a C60 fullerene adduct as the acceptors have been synthesized for studying the ability of the pyrazine-containing hetero-aromatic wires to mediate photoinduced electron transfer between the porphyrin donor and fullerene acceptor. Appropriate substitutions were made and the necessary model compounds useful for dissecting the complex photochemistry that the series is expected to display were also synthesized. A dye was synthesized using a pyrazine-containing heteroaromatic spacer that features two porphyrin chromophores. The dye dramatically outperforms the control dye featuring the same porphyrin and a simple benzoic acid linker. A novel, highly soluble 6+kDa extended phthalocyanine was also synthesized and exhibits absorption out to 900nm. The extensive functionalization of the extended phthalocyanine core with dodecyl groups enabled purification and characterization of an otherwise insoluble entity. Finally, in the interest of incorporating modular design into plastic solar cells, a series of porphyrin-containing monomers have been synthesized that are intended to form dyadic and triadic molecular-heterojunction polymers with dedicated hole and electron transport pathways during electrochemical polymerization.
ContributorsWatson, Brian Lyndon (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Moore, Ana L (Committee member) / Arizona State University (Publisher)
Created2013
152843-Thumbnail Image.png
Description
The first chapter reviews three decades of artificial photosynthetic research conducted by the A. Moore, T. Moore, and D. Gust research group. Several carotenoid (Car) and tetrapyrrole containing molecules were synthesized and investigated for excitation energy transfer (EET), photoregulation, and photoprotective functions. These artificial photosynthetic compounds mimicked known processes and

The first chapter reviews three decades of artificial photosynthetic research conducted by the A. Moore, T. Moore, and D. Gust research group. Several carotenoid (Car) and tetrapyrrole containing molecules were synthesized and investigated for excitation energy transfer (EET), photoregulation, and photoprotective functions. These artificial photosynthetic compounds mimicked known processes and investigated proposed mechanisms in natural systems. This research leads to a greater understanding of photosynthesis and design concepts for organic based solar energy conversion devices. The second and third chapters analyze the triplet energy transfer in carotenoid containing dyads. Transient absorption, time-resolved FTIR and resonance Raman spectra revealed that in a 4-amide linked carotenophthalocyanine dyads the Car triplet state is shared across the larger conjugated system, which is similar to protein complexes in oxygenic photosynthetic organisms. In a carotenopurpurin dyad (CarPur) a methylene ester covalent bond prevents the purpurin (Pur) from influencing the Car triplet based on the transient absorption, time-resolved FTIR and resonance Raman spectra. Thus CarPur resembles the antenna proteins from anoxygenic photosynthetic bacteria. Additional examples of carotenoporphyrin dyads further demonstrates the need for orbital overlap for ultrafast triplet energy transfer and the formations of possible intramolecular charge transfer state. The fourth chapter studies a 4-amino phenyl carotenophthalocyanine and its model compounds using high temporal resolution transient absorption spectroscopy techniques. EET from the Car second excited (S2) state to the phthalocyanine (Pc) was determined to be 37% and a coupled hot ground state (S*)/Pc excited state spectrum was observed. Excitation of the tetrapyrrole portion of the dyad did not yield any kinetic differences, but there was an S* signal during the excited states of the dyad. This demonstrates the EET and photoregulating properties of this artificial photosynthetic compound are similar to those of natural photosynthesis. The last chapter covers the synthesis of silicon Pc (SiPc) dyes and the methods for attaching them to gold nanoparticles and flat gold surfaces. SiPc attached to patterned gold surfaces had unperturbed fluorescence, however the selectivity for the gold was low, so alternative materials are under investigation to improve the dye's selectivity for the gold surface.
ContributorsWongCarter, Katherine (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
150233-Thumbnail Image.png
Description
The work described in the thesis involves the synthesis of a molecular triad which is designed to undergo proton coupled electron transfer (PCET) upon irradiation with light. Photoinduced PCET is an important process that many organisms use and the elucidation of its mechanism will allow further understanding of this process

The work described in the thesis involves the synthesis of a molecular triad which is designed to undergo proton coupled electron transfer (PCET) upon irradiation with light. Photoinduced PCET is an important process that many organisms use and the elucidation of its mechanism will allow further understanding of this process and its potential applications. The target compound designed for PCET studies consists of a porphyrin chromophore (also a primary electron donor), covalently linked to a phenol-imidazole (secondary electron donor), and a C60 (primary electron acceptor). The phenol-imidazole moiety of this system is modeled after the TyrZ His-190 residues in the reaction center of Photosystem II (PS II). These residues participate in an intermolecular H-bond between the phenol side chain of TyrZ and the imidazole side chain of His-190. The phenol side chain of TyrZ is the electron transfer mediator between the oxygen evolving complex (OEC) and P680 (primary electron donor) in PSII. During electron transfer from TyrZ to P680*+, the phenolic proton of TyrZ becomes highly acidic (pKa~-2) and the hydrogen is preferentially transferred to the relatively basic imidazole of His-190 through a pre-existing hydrogen bond. This PCET process avoids a charged intermediate, on TyrZ, and results in a neutral phenolic radical (TyrZ*). The current research consists of building a molecular triad, which can mimic the photoinduced PCET process of PSII. The following, documents the synthetic progress in the synthesis of a molecular triad designed to investigate the mechanism of PCET as well as gain further insight on how this process can be applied in artificial photosynthetic devices.
ContributorsPatterson, Dustin (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Skibo, Edward B (Committee member) / Arizona State University (Publisher)
Created2011
151232-Thumbnail Image.png
Description
Understanding the mechanisms of metalloproteins at the level necessary to engineer new functionalities is complicated by the need to parse the complex overlapping functions played by each amino acid without negatively impacting the host organism. Artificial or designed metallopeptides offer a convenient and simpler platform to explore metal-ligand interactions in

Understanding the mechanisms of metalloproteins at the level necessary to engineer new functionalities is complicated by the need to parse the complex overlapping functions played by each amino acid without negatively impacting the host organism. Artificial or designed metallopeptides offer a convenient and simpler platform to explore metal-ligand interactions in an aqueous, biologically relevant coordination context. In this dissertation, the peptide SODA (ACDLPCG), a synthetic derivative of the nickel-binding pocket of nickel superoxide dismutase, is used as a scaffold to construct a variety of novel metallopeptides and explore their reactivity. In Chapter 2, I show that SODA binds Co(II) and the resulting peptide, CoSODA, reacts with oxygen in an unexpected two step process that models the biosynthesis of Co nitrile hydratase. First, the thiolate sulfur is oxidized and then the metallocenter is oxidized to Co(III). In Chapter 3, I show that both CoSODA and CuSODA form CN- adducts. Spectroscopic investigations of these metallopeptides are compared with data from NiSODA and Ni(CN)SODA to show the remarkable geometric versatility of SODA with respect to interactions with metallocenters. In Chapter 4, exploiting the propensity of sulfur ligands to form bridging structures, NiSODA is used as a metallosynthon to direct synthesis of hetero bi- and tri-metallic peptides as models for [NiFe]-hydrogenases and the A cluster of acetyl-CoA synthase carbon monoxide dehydrogenase. Building on this synthetic strategy, in Chapter 5, I demonstrate synthesis of NiRu complexes including a Ru(bipyridine)2 moiety and characterize their photochemistry.
ContributorsDutta, Arnab (Author) / Jones, Anne K (Thesis advisor) / Moore, Ana L (Committee member) / Vermass, Willem (Committee member) / Arizona State University (Publisher)
Created2012
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05