Matching Items (124)
Filtering by

Clear all filters

149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
Description

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research

In an effort to address the lack of literature in on-campus active travel, this study aims to investigate the following primary questions:<br/>• What are the modes that students use to travel on campus?<br/>• What are the motivations that underlie the mode choice of students on campus?<br/>My first stage of research involved a series of qualitative investigations. I held one-on-one virtual interviews with students in which I asked them questions about the mode they use and why they feel that their chosen mode works best for them. These interviews served two functions. First, they provided me with insight into the various motivations underlying student mode choice. Second, they provided me with an indication of what explanatory variables should be included in a model of mode choice on campus.<br/>The first half of the research project informed a quantitative survey that was released via the Honors Digest to attract student respondents. Data was gathered on travel behavior as well as relevant explanatory variables.<br/>My analysis involved developing a logit model to predict student mode choice on campus and presenting the model estimation in conjunction with a discussion of student travel motivations based on the qualitative interviews. I use this information to make a recommendation on how campus infrastructure could be modified to better support the needs of the student population.

ContributorsMirtich, Laura Christine (Author) / Salon, Deborah (Thesis director) / Fang, Kevin (Committee member) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
149928-Thumbnail Image.png
Description
The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.
ContributorsTorres Garcia, Wandaliz (Author) / Meldrum, Deirdre R. (Thesis advisor) / Runger, George C. (Thesis advisor) / Gel, Esma S. (Committee member) / Li, Jing (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2011
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151291-Thumbnail Image.png
Description
The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is

The contemporary architectural pedagogy is far removed from its ancestry: the classical Beaux-Arts and polytechnic schools of the 19th century and the Bauhaus and Vkhutemas models of the modern period. Today, the "digital" has invaded the academy and shapes pedagogical practices, epistemologies, and ontologies within it, and this invasion is reflected in teaching practices, principles, and tools. Much of this digital integration goes unremarked and may not even be explicitly taught. In this qualitative research project, interviews with 18 leading architecture lecturers, professors, and deans from programs across the United States were conducted. These interviews focused on advanced practices of digital architecture, such as the use of digital tools, and how these practices are viewed. These interviews yielded a wealth of information about the uses (and abuses) of advanced digital technologies within the architectural academy, and the results were analyzed using the methods of phenomenology and grounded theory. Most schools use digital technologies to some extent, although this extent varies greatly. While some schools have abandoned hand-drawing and other hand-based craft almost entirely, others have retained traditional techniques and use digital technologies sparingly. Reasons for using digital design processes include industry pressure as well as the increased ability to solve problems and the speed with which they could be solved. Despite the prevalence of digital design, most programs did not teach related design software explicitly, if at all, instead requiring students (especially graduate students) to learn to use them outside the design studio. Some of the problems with digital design identified in the interviews include social problems such as alienation as well as issues like understanding scale and embodiment of skill.
ContributorsAlqabandy, Hamad (Author) / Brandt, Beverly (Thesis advisor) / Mesch, Claudia (Committee member) / Newton, David (Committee member) / Arizona State University (Publisher)
Created2012
151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012