Matching Items (6)
Filtering by

Clear all filters

152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
152881-Thumbnail Image.png
Description
Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks that sensed relative digit position was accurately reproduced when sensorimotor transformations occurred with larger vertical fingertip separations, within the same hand, and at the same hand posture. The results from a follow-up experiment conducted in the same digit position-matching task while generating forces in different directions reveal a biased relative digit position toward the direction of force production. Specifically, subjects reproduced the thumb CoP higher than the index finger CoP when vertical digit forces were directed upward and downward, respectively, and vice versa. It was also found in lifting tasks that the ability to discriminate the relative digit position prior to lifting an object and modulate digit forces to minimize object roll as a function of digit position are robust regardless of whether motor commands for positioning the digits on the object are involved. These results indicate that the erroneous sensorimotor transformations of relative digit position reported here must be compensated during dexterous manipulation by other mechanisms, e.g., visual feedback of fingertip position. Furthermore, predicted sensory consequences derived from the efference copy of voluntary motor commands to generate vertical digit forces may override haptic sensory feedback for the estimation of relative digit position. Lastly, the sensorimotor transformations from haptic feedback to digit force modulation to position appear to be facilitated by motor commands for active digit placement in manipulation.
ContributorsShibata, Daisuke (Author) / Santello, Marco (Thesis advisor) / Dounskaia, Natalia (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2014
157357-Thumbnail Image.png
Description
Temporal bisection is a common procedure for the study of interval timing in humans and non-human animals, in which participants are trained to discriminate between a “short” and a “long” interval of time. Following stable and accurate discrimination, unreinforced probe intervals between the two values are tested. In temporal bisection

Temporal bisection is a common procedure for the study of interval timing in humans and non-human animals, in which participants are trained to discriminate between a “short” and a “long” interval of time. Following stable and accurate discrimination, unreinforced probe intervals between the two values are tested. In temporal bisection studies, intermediate non-reinforced probe intervals are typically arithmetically- or geometrically- spaced, yielding point of subjective equality at the arithmetic and geometric mean of the trained anchor intervals. Brown et al. (2005) suggest that judgement of the length of an interval, even when not reinforced, is influenced by its subjective length in comparison to that of other intervals. This hypothesis predicts that skewing the distribution of probe intervals shifts the psychophysical function relating interval length to the probability of reporting that interval as “long.” Data from the present temporal bisection study, using rats, suggest that there may be a within-session shift in temporal bisection responding which accounts for observed shifts in the psychophysical functions, and that this may also influence how rats categorize ambiguous intervals.
ContributorsGupta, Tanya A. (Author) / Sanabria, Federico (Thesis advisor) / Wynne, Clive (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2019
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
149490-Thumbnail Image.png
Description
Educators and therapists must unify and formulate new strategies to address the academic and social needs of a newly emerging at risk demographic, "the forgotten middle." Currently, a paradigm shift within educative music therapy, human development study, and educational psychology, suggests that curriculums need to integrate alternative methods into

Educators and therapists must unify and formulate new strategies to address the academic and social needs of a newly emerging at risk demographic, "the forgotten middle." Currently, a paradigm shift within educative music therapy, human development study, and educational psychology, suggests that curriculums need to integrate alternative methods into their framework, change the definition of at-risk, and recognize math aptitude and social competency as predictors of a student's ability to gain upward mobility and self-sufficiency. Musical interaction, although considered a secondary measure within educational forums, is a viable means to address the socio-emotional and academic needs of students. In order to substantiate the need for educators to integrate educative music therapy and social competency programs into standard curriculums, the researcher conducted a study using 23 students from a beginning high school guitar class and 4 students from a high school after-school program. These students participated in a ten-week study involving educative music therapy, social competency, and math aptitude. Participants completed the math fluency and math calculations sections of the Wechsler's Individual Achievement Test version 3, along with a questionnaire examining the participants' beliefs about the influence of music on math aptitude and social competency. Although the pre- and post-test results show no statistically significant difference between educative music therapy and math aptitude, the results from the questionnaires administered suggest that students perceive that social competency and musical interaction augment academic and social performance.
ContributorsHeiskell, James D (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2010
153559-Thumbnail Image.png
Description
ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further

ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further augmented through a supplementary technique derived from my previous research. This research has provided converging behavioral evidence that dyads engaged in joint action in a familiar task requiring spatial and temporal synchrony end up developing an extended overlap in their body representations, termed a joint body schema (JBS). The present research examined if inducing a JBS between a trainer and a novice trainee, prior to having the dyad engage in imitation practice on a novel motor pattern would enhance both of the training process and its outcomes.

Participants either worked with their trainer on a familiar joint task to develop the JBS (Joint condition) or performed a solo equivalent of the task while being watched by their trainer (Solo condition). Participants In both groups then engaged in blocks of alternating imitation practice and free production of a novel manual motor pattern, while their motor output was recorded. Analyses indicated that the Joint participants outperformed the Solo participants in the ability to synchronize the spatial and temporal components of their imitation movements with the trainer’s pattern-modeling movements. The same group showed superior performance when attempting to freely produce the pattern. These results carry significant theoretical and translational potentials for the fields of motor learning and rehabilitation.
ContributorsSoliman, Tamer (Author) / Glenberg, Arthur (Thesis advisor) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015