Matching Items (41)
154233-Thumbnail Image.png
Description
Food production and consumption directly impacts the environment and human health. Protein in particular has significant cultural and health implications, and how people make decisions about what type of protein they eat has not been studied directly. Many decision tools exist to offer recommendations for seafood, but neglect livestock or

Food production and consumption directly impacts the environment and human health. Protein in particular has significant cultural and health implications, and how people make decisions about what type of protein they eat has not been studied directly. Many decision tools exist to offer recommendations for seafood, but neglect livestock or plant protein. This study attempts to address these shortcomings in food decision science and tools by asking the questions: 1) What qualities of a dietary protein-based decision tool make it effective? 2) What do people consider when making decisions about what type of protein to consume? Using literature review, meta-analysis, and surveys, this study attempts to determine how the knowledge gained from answering these questions can be used to develop an electronic tool to engage consumers in making sustainable and healthy decisions about protein consumption. The data show that, given environmental and health information about the protein types, people in the sample of farmers market shoppers are more likely to purchase wild salmon and organically grown soybeans, and less likely to purchase grain-fed beef. However, the order of preference among the six types of protein did not change. Additional results suggest that there is a disconnect between consumers and sources of dietary protein, indicating a need for improved education. Inconsistency in labeling and information regarding protein types is a large source of confusion for consumers who participated in the survey, highlighting the need for transparency. Results of this study suggest that decisions tools may help improve decision making, but new ways of using them need to be considered to achieve this.
ContributorsGeren, Sarah (Author) / Gerber, Leah (Thesis advisor) / Minteer, Ben (Committee member) / Wentz, Elizabeth (Committee member) / Arvai, Joseph (Committee member) / Arizona State University (Publisher)
Created2015
158481-Thumbnail Image.png
Description

The overarching aim of this dissertation is to evaluate Geodesign as a planning approach for American Indian communities in the American Southwest. There has been a call amongst indigenous planners for a planning approach that prioritizes indigenous and community values and traditions while incorporating Western planning techniques. Case studies from

The overarching aim of this dissertation is to evaluate Geodesign as a planning approach for American Indian communities in the American Southwest. There has been a call amongst indigenous planners for a planning approach that prioritizes indigenous and community values and traditions while incorporating Western planning techniques. Case studies from communities in the Navajo Nation and the Tohono O’odham Nation are used to evaluate Geodesign because they possess sovereign powers of self-government within their reservation boundaries and have historical and technical barriers that have limited land use planning efforts. This research aimed to increase the knowledge base of indigenous planning, participatory Geographic information systems (GIS), resiliency, and Geodesign in three ways. First, the research examines how Geodesign can incorporate indigenous values within a community-based land use plan. Results showed overwhelmingly that indigenous participants felt that the resulting plan reflected their traditions and values, that the community voice was heard, and that Geodesign would be a recommended planning approach for other indigenous communities. Second, the research examined the degree in which Geodesign could incorporate local knowledge in planning and build resiliency against natural hazards such as flooding. Participants identified local hazards, actively engaged in developing strategies to mitigate flood risk, and utilized spatial assessments to plan for a more flood resilient region. Finally, the research examined the role of the planner in conducting Geodesign planning efforts and how Geodesign can empower marginalized communities to engage in the planning process using Arnstein’s ladder as an evaluation tool. Results demonstrated that outside professional planners, scientists, and geospatial analysts needed to assume the role of a facilitator, decision making resource, and a capacity builder over traditional roles of being the plan maker. This research also showed that Geodesign came much closer to meeting American Indian community expectations for public participation in decision making than previous planning efforts. This research demonstrated that Geodesign planning approaches could be utilized by American Indian communities to assume control of the planning process according to local values, traditions, and culture while meeting rigorous Western planning standards.

ContributorsDavis, Jonathan Michael (Author) / Pijawka, David (Thesis advisor) / Wentz, Elizabeth (Thesis advisor) / Hale, Michelle (Committee member) / Arizona State University (Publisher)
Created2020
158204-Thumbnail Image.png
Description
Recent extreme weather events such the 2020 Nashville, Tennessee tornado and Hurricane Maria highlight the devastating economic losses and loss of life associated with weather-related disasters. Understanding the impacts of extreme weather events is critical to mitigating disaster losses and increasing societal resilience to future events. Geographical approaches are best

Recent extreme weather events such the 2020 Nashville, Tennessee tornado and Hurricane Maria highlight the devastating economic losses and loss of life associated with weather-related disasters. Understanding the impacts of extreme weather events is critical to mitigating disaster losses and increasing societal resilience to future events. Geographical approaches are best suited to examine social and ecological factors in extreme weather event impacts because they systematically examine the spatial interactions (e.g., flows, processes, impacts) of the earth’s system and human-environment relationships. The goal of this research is to demonstrate the utility of geographical approaches in assessing social and ecological factors in extreme weather event impacts. The first two papers analyze the social factors in the impact of Hurricane Sandy through the application of social geographical factors. The first paper examines how knowledge disconnect between experts (climatologists, urban planners, civil engineers) and policy-makers contributed to the damaging impacts of Hurricane Sandy. The second paper examines the role of land use suitability as suggested by Ian McHarg in 1969 and unsustainable planning in the impact of Hurricane Sandy. Overlay analyses of storm surge and damage buildings show damage losses would have been significantly reduced had development followed McHarg’s suggested land use suitability. The last two papers examine the utility of Unpiloted Aerial Systems (UASs) technologies and geospatial methods (ecological geographical approaches) in tornado damage surveys. The third paper discusses the benefits, limitations, and procedures of using UASs technologies in tornado damage surveys. The fourth paper examines topographical influences on tornadoes using UAS technologies and geospatial methods (ecological geographical approach). This paper highlights how topography can play a major role in tornado behavior (damage intensity and path deviation) and demonstrates how UASs technologies can be invaluable tools in damage assessments and improving the understanding of severe storm dynamics (e.g., tornadic wind interactions with topography). Overall, the significance of these four papers demonstrates the potential to improve societal resilience to future extreme weather events and mitigate future losses by better understanding the social and ecological components in extreme weather event impacts through geographical approaches.
ContributorsWagner, Melissa Anne (Author) / Cerveny, Randall S. (Thesis advisor) / Wentz, Elizabeth (Thesis advisor) / Chhetri, Netra B (Committee member) / Vivoni, Enrique R (Committee member) / Arizona State University (Publisher)
Created2020
128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

ContributorsZhao, Qunshan (Author) / Myint, Soe (Author) / Wentz, Elizabeth (Author) / Fan, Chao (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18
128653-Thumbnail Image.png
Description

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical,

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics.

ContributorsWentz, Elizabeth (Author) / Anderson, Sharolyn (Author) / Fragkias, Michail (Author) / Netzband, Maik (Author) / Mesev, Victor (Author) / Myint, Soe (Author) / Quattrochi, Dale (Author) / Rahman, Atiqur (Author) / Seto, Karen C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30