Matching Items (41)
149378-Thumbnail Image.png
Description

Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing

Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

ContributorsBrown, Scott (Author) / Wentz, Elizabeth (Thesis advisor) / Myint, Soe W. (Committee member) / Anderson, Sharolyn (Committee member) / Arizona State University (Publisher)
Created2010
Description

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and usage can introduce complexity that emerges from the composition itself.

To improve assurance of model correctness, sub-systems using disparate modeling formalisms must be integrated above and beyond just the data and control level; their composition must have model specification and simulation execution aspects as well. Poly-formalism composition is one approach to composing models in this manner.

This dissertation describes a poly-formalism composition between a Discrete EVent System specification (DEVS) model and a Cellular Automata (CA) model types. These model specifications have been chosen for their broad applicability in important and emerging domains. An agent-environment domain exemplifies the composition approach. The inherent spatial relations within a CA make it well-suited for environmental representations. Similarly, the component-based nature of agents fits well within the hierarchical component structure of DEVS.

This composition employs the use of a third model, called an interaction model, that includes methods for integrating the two model types at a formalism level, at a systems architecture level, and at a model execution level. A prototype framework using DEVS for the agent model and GRASS for the environment has been developed and is described. Furthermore, this dissertation explains how the concepts of this composition approach are being applied to a real-world research project.

This dissertation expands the tool set modelers in computer science and other disciplines have in order to build hybrid system models, and provides an interaction model for an on-going research project. The concepts and models presented in this dissertation demonstrate the feasibility of composition between discrete-event agents and discrete-time cellular automata. Furthermore, it provides concepts and models that may be applied directly, or used by a modeler to devise compositions for other research efforts.

ContributorsMayer, Gary R. (Author)
Created2009
160839-Thumbnail Image.png
Description

In the face of profound shock and change, individuals, organizations, and communities are seeking new ways to prepare for an uncertain future, their only certainty being that the present trajectory of change will intensify. Pandemics, wildfires, heat waves, hurricanes, flooding, social unrest, economic strife, and a rapidly changing climate system

In the face of profound shock and change, individuals, organizations, and communities are seeking new ways to prepare for an uncertain future, their only certainty being that the present trajectory of change will intensify. Pandemics, wildfires, heat waves, hurricanes, flooding, social unrest, economic strife, and a rapidly changing climate system comprise a resounding wake up call: we must reinvent our institutions to think about and act with a resilient mindset. The purpose of the playbook is to support these efforts and build stronger, adaptive, and resilient communities.

ContributorsHinrichs, Margaret (Editor, Contributor) / Solís, Patricia (Editor, Contributor) / Arizona State University. Knowledge Exchange for Resilience (Contributor) / Global Council for Science and the Environment (Contributor) / Applegate, Joffa Michele (Contributor) / BurnSilver, Shauna (Contributor) / Goldman, Erica (Contributor) / Johnston, Erik W., 1977- (Contributor) / Miller, Thaddeus R. (Contributor) / Morrison, David (Contributor) / Nation, Marcia (Contributor) / Ngo, Christine Ngoc, 1981- (Contributor) / Shutters, Shade (Contributor) / Wentz, Elizabeth (Contributor) / Wyman, Michelle (Contributor)
Created2021
189382-Thumbnail Image.png
Description
Transportation infrastructure facilitates humans in moving themselves and material goods, and thereby supports the functioning of human society. Transportation planners, engineers, and decision makers in the 20th century largely excluded local stakeholders from planning processes; the resultant built environment has perpetuated inequity and social division. Transportation system planning has often

Transportation infrastructure facilitates humans in moving themselves and material goods, and thereby supports the functioning of human society. Transportation planners, engineers, and decision makers in the 20th century largely excluded local stakeholders from planning processes; the resultant built environment has perpetuated inequity and social division. Transportation system planning has often been conducted in specialized departments with little interdisciplinary collaboration. Integration of diverse perspectives and ontologies throughout transportation planning processes can produce robust, resilient, equitable, and sustainable transportation systems. Geodesign is a framework for planning the built environment that necessarily involves voices from multiple perspectives including local stakeholders, design professionals, geographic scientists, and information technology coordinators. Geodesign uses geographic information systems to create designs that reflect stakeholder needs, values, and priorities while addressing the study area’s geographic context. Geodesign has been used primarily for land use planning and has only addressed transportation planning concerns in relation to land use.This dissertation consists of an introduction, three projects that apply the geodesign framework to transportation planning and a concluding chapter. The introduction details the rationale for this research. The first project is a systematic review of geodesign projects that address transportation systems. The review seeks to identify epistemological alignment between the geodesign framework and participatory transportation planning. The results demonstrate that geodesign comports with transportation planners’ existing practices and uses of planning support systems. The combination of geodesign and transportation planning methods for stakeholder engagement could produce a synergistic framework for transportation infrastructure planning. The second project applies geodesign to locating refueling stations for hydrogen fuel cell vehicles around Hartford, Connecticut. Network designs generated by workshop participants were compared to networks generated by optimization models. The third project applies geodesign to locating sites for micromobility hubs in Tempe, Arizona, via short-form workshop series format. Participants considered the format conducive to collaborative public participatory design. These three projects demonstrate the suitability of the geodesign framework for node-based transportation facility planning via communicative rationality. The conclusion summarizes these three projects and highlights the reproducibility of the geodesign method for node-based transportation facility location planning in other study areas.
ContributorsLopez Jaramillo, Oscar (Author) / Kuby, Michael (Thesis advisor) / Wentz, Elizabeth (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2023