Matching Items (96)
152940-Thumbnail Image.png
Description
Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings

Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings to the treatment of PTE, one of which is the use of anticonvulsant medication to the population of TBI patients that are not likely to develop PTE. The complication of identifying the two populations has been hindered by the ability to find a marker to the pathogenesis of PTE. The central hypothesis of this dissertation is that following TBI, the cortex undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes seizure development. Chapter 2 of this dissertation details excitatory and inhibitory changes in the rat cortex after severe TBI. This dissertation aims to identify cortical changes to a single cell level after severe TBI using whole cell patch clamp and electroencephalogram electrophysiology. The work of this dissertation concluded that excitatory and inhibitory synaptic activity in cortical controlled impact (CCI) animals showed the development of distinct burst discharges that were not present in control animals. The results suggest that CCI induces early "silent" seizures that are detectable on EEG and correlate with changes to the synaptic excitability in the cortex. The synaptic changes and development of burst discharges may play an important role in synchronizing the network and promoting the development of PTE.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2014
153508-Thumbnail Image.png
Description
Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template

Telomerase enzyme is a truly remarkable enzyme specialized for the addition of short, highly repetitive DNA sequences onto linear eukaryotic chromosome ends. The telomerase enzyme functions as a ribonucleoprotein, minimally composed of the highly conserved catalytic telomerase reverse transcriptase and essential telomerase RNA component containing an internalized short template region within the vastly larger non-coding RNA. Even among closely related groups of species, telomerase RNA is astonishingly divergent in sequence, length, and secondary structure. This massive disparity is highly prohibitive for telomerase RNA identification from previously unexplored groups of species, which is fundamental for secondary structure determination. Combined biochemical enrichment and computational screening methods were employed for the discovery of numerous telomerase RNAs from the poorly characterized echinoderm lineage. This resulted in the revelation that--while closely related to the vertebrate lineage and grossly resembling vertebrate telomerase RNA--the echinoderm telomerase RNA central domain varies extensively in structure and sequence, diverging even within echinoderms amongst sea urchins and brittle stars. Furthermore, the origins of telomerase RNA within the eukaryotic lineage have remained a persistent mystery. The ancient Trypanosoma telomerase RNA was previously identified, however, a functionally verified secondary structure remained elusive. Synthetic Trypanosoma telomerase was generated for molecular dissection of Trypanosoma telomerase RNA revealing two RNA domains functionally equivalent to those found in known telomerase RNAs, yet structurally distinct. This work demonstrates that telomerase RNA is uncommonly divergent in gross architecture, while retaining critical universal elements.
ContributorsPodlevsky, Joshua (Author) / Chen, Julian (Thesis advisor) / Mangone, Marco (Committee member) / Kusumi, Kenro (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2015
154018-Thumbnail Image.png
Description
Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.
ContributorsDunn, Matthew Ryan (Author) / Chaput, John C (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2015
156603-Thumbnail Image.png
Description
The ability to detect and appropriately respond to chemical stimuli is important for many organisms, ranging from bacteria to multicellular animals. Responses to these stimuli can be plastic over multiple time scales. In the short-term, the synaptic strengths of neurons embedded in neural circuits can be modified and result in

The ability to detect and appropriately respond to chemical stimuli is important for many organisms, ranging from bacteria to multicellular animals. Responses to these stimuli can be plastic over multiple time scales. In the short-term, the synaptic strengths of neurons embedded in neural circuits can be modified and result in various forms of learning. In the long-term, the overall developmental trajectory of the olfactory network can be altered and synaptic strengths can be modified on a broad scale as a direct result of long-term (chronic) stimulus experience. Over evolutionary time the olfactory system can impose selection pressures that affect the odorants used in communication networks. On short time scales, I measured the effects of repeated alarm pheromone exposure on the colony-level defense behaviors in a social bee. I found that the responses to the alarm pheromone were plastic. This suggests that there may be mechanisms that affect individual plasticity to pheromones and regulate how these individuals act in groups to coordinate nest defense. On longer time scales, I measured the behavioral and neural affects of bees given a single chronic odor experience versus bees that had a natural, more diverse olfactory experience. The central brains of bees with a deprived odor experience responded more similarly to odorants in imaging studies, and did not develop a fully mature olfactory network. Additionally, these immature networks showed behavioral deficits when recalling odor mixture components. Over evolutionary time, signals need to engage the attention of and be easily recognized by bees. I measured responses of bees to a floral mixture and its constituent monomolecular components. I found that natural floral mixtures engage the orientation of bees’ antennae more strongly than single-component odorants and also provide more consistent central brain responses between stimulations. Together, these studies highlight the importance of olfactory experience on different scales and how the nervous system might impose pressures to select the stimuli used as signals in communication networks.
ContributorsJernigan, Christopher (Author) / Smith, Brian H. (Thesis advisor) / Newbern, Jason (Committee member) / Harrisoin, Jon (Committee member) / Rutowski, Ronald (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
Description
Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. Peripheral blood is a rich source

Extracellular vesicles (EVs) represent a heterogeneous population of small vesicles, consisting of a phospholipidic bilayer surrounding a soluble interior cargo. These vesicles play an important role in cellular communication by virtue of their protein, RNA, and lipid content, which can be transferred among cells. Peripheral blood is a rich source of circulating EVs. An analysis of EVs in peripheral blood could provide access to unparalleled amounts of biomarkers of great diagnostic, prognostic as well as therapeutic value. In the current study, a plasma EV enrichment method based on pluronic co-polymer was first established and characterized. Plasma EVs from breast cancer patients were then enriched, profiled and compared to non-cancer controls. Proteins signatures that contributed to the prediction of cancer samples from non-cancer controls were created by a random-forest based cross-validation approach. We found that a large portion of these signatures were related to breast cancer aggression. To verify such findings, KIAA0100, one of the features identified, was chosen for in vitro molecular and cellular studies in the breast cancer cell line MDA-MB-231. We found that KIAA0100 regulates cancer cell aggression in MDA-MB-231 in an anchorage-independent manner and is particularly associated with anoikis resistance through its interaction with HSPA1A. Lastly, plasma EVs contain not only individual proteins, but also numerous molecular complexes. In order to measure millions of proteins, isoforms, and complexes simultaneously, Adaptive Dynamic Artificial Poly-ligand Targeting (ADAPT) platform was applied. ADAPT employs an enriched library of single-stranded oligodeoxynucleotides to profile complex biological samples, thus achieving a deep coverage of system-wide, native biomolecules. Profiling of EVs from breast cancer patients was able to obtain a prediction AUC performance of 0.73 when compared biopsy-positive cancer patient to healthy controls and 0.64 compared to biopsy-negative controls and such performance was not associated with the physical breast condition indicated by BIRAD scores. Taken together, current research demonstrated the potential of profiling plasma EVs in searching for therapeutic targets as well as diagnostic signatures.
ContributorsZhong, Zhenyu (Author) / Spetzler, David (Thesis advisor) / Yan, Hao (Thesis advisor) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018
157282-Thumbnail Image.png
Description
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in

the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting symptoms have already undergone significant neuronal loss without chance for recovery. Analysis of disease specific changes in gene expression directly from human patients can uncover invaluable clues about a still unknown etiology, the potential of which grows exponentially as additional gene regulatory measures are questioned. Epigenetic mechanisms are emerging as important components of neurodegeneration, including PD; the extent to which methylation changes correlate with disease progression has not yet been reported. This collection of work aims to define multiple layers of PD that will work toward developing biomarkers that not only could improve diagnostic accuracy, but also push the boundaries of the disease detection timeline. I examined changes in gene expression, alternative splicing of those gene products, and the regulatory mechanism of DNA methylation in the Parkinson’s disease system, as well as the pathologically related Alzheimer’s disease (AD). I first used RNA sequencing (RNAseq) to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex of patients with PD and PD with dementia (PDD). Next, I performed a longitudinal genome-wide methylation study surveying ~850K CpG methylation sites in whole blood from 189 PD patients and 191 control individuals obtained at both a baseline and at a follow-up visit after 2 years. I also considered how symptom management medications could affect the regulatory mechanism of DNA methylation. In the last chapter of this work, I intersected RNAseq and DNA methylation array datasets from whole blood patient samples for integrated differential analyses of both PD and AD. Changes in gene expression and DNA methylation reveal clear patterns of pathway dysregulation that can be seen across brain and blood, from one study to the next. I present a thorough survey of molecular changes occurring within the idiopathic Parkinson’s disease patient and propose candidate targets for potential molecular biomarkers.
ContributorsHenderson, Adrienne Rose (Author) / Huentelman, Matthew J (Thesis advisor) / Newbern, Jason (Thesis advisor) / Dunckley, Travis L (Committee member) / Jensen, Kendall (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2019
157059-Thumbnail Image.png
Description
Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional

Multicellular organisms use precise gene regulation, executed throughout development, to build and sustain various cell and tissue types. Post-transcriptional gene regulation is essential for metazoan development and acts on mRNA to determine its localization, stability, and translation. MicroRNAs (miRNAs) and RNA binding proteins (RBPs) are the principal effectors of post-transcriptional gene regulation and act by targeting the 3'untranslated regions (3'UTRs) of mRNA. MiRNAs are small non-coding RNAs that have the potential to regulate hundreds to thousands of genes and are dysregulated in many prevalent human diseases such as diabetes, Alzheimer's disease, Duchenne muscular dystrophy, and cancer. However, the precise contribution of miRNAs to the pathology of these diseases is not known.

MiRNA-based gene regulation occurs in a tissue-specific manner and is implemented by an interplay of poorly understood and complex mechanisms, which control both the presence of the miRNAs and their targets. As a consequence, the precise contributions of miRNAs to gene regulation are not well known. The research presented in this thesis systematically explores the targets and effects of miRNA-based gene regulation in cell lines and tissues.

I hypothesize that miRNAs have distinct tissue-specific roles that contribute to the gene expression differences seen across tissues. To address this hypothesis and expand our understanding of miRNA-based gene regulation, 1) I developed the human 3'UTRome v1, a resource for studying post-transcriptional gene regulation. Using this resource, I explored the targets of two cancer-associated miRNAs miR-221 and let-7c. I identified novel targets of both these miRNAs, which present potential mechanisms by which they contribute to cancer. 2) Identified in vivo, tissue-specific targets in the intestine and body muscle of the model organism Caenorhabditis elegans. The results from this study revealed that miRNAs regulate tissue homeostasis, and that alternative polyadenylation and miRNA expression patterns modulate miRNA targeting at the tissue-specific level. 3) Explored the functional relevance of miRNA targeting to tissue-specific gene expression, where I found that miRNAs contribute to the biogenesis of mRNAs, through alternative splicing, by regulating tissue-specific expression of splicing factors. These results expand our understanding of the mechanisms that guide miRNA targeting and its effects on tissue-specific gene expression.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Newbern, Jason (Committee member) / Rawls, Alan (Committee member) / Arizona State University (Publisher)
Created2019
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018
133891-Thumbnail Image.png
Description
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using

The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using wire mesh (6hr/daily) for five days with two days off before restraint resumed for three weeks for a total of 23 restraint days. The groups consisted of control (CON) with no restraint other than food and water restriction yoked to the restrained groups, stress immediate (STR-IMM), which were restrained then fear conditioned soon after the end of the IRS paradigm, and stress given a rest for 6 weeks before fear conditioning commenced (STR-R6). Rats were fear conditioned by pairing a 20 second tone with a footshock, then given extinction training for two days (15 tone only on each day). On the first day of extinction, all groups discriminated well on the first trial, but then as trials progressed, STR-R6 discriminated between tone and context less than did CON. On the second day of extinction, STR- IMM froze more to context in the earlier trials than compared to STR-R6 and CON. As trials progressed STR-IMM and STR-R6 froze more to context than compared to CON. Together, CON discriminated between tone and context better than did STR-IMM and STR-R6. Sucrose preference, novelty suppressed feeding, and elevated plus maze was performed after fear extinction was completed. No statistical differences were observed among groups for sucrose preference or novelty suppressed feeding. For the elevated plus maze, STR-IMM entered the open arms and the sum of both open and closed arms fewer than did STR- R6 and CON. We interpret the findings to suggest that the stress groups displayed increased hypervigilance and anxiety with STR-R6 exhibiting a unique phenotype than that of STR-IMM and CON.
ContributorsShah, Vrishti Bimal (Author) / Conrad, Cheryl (Thesis director) / Newbern, Jason (Committee member) / Judd, Jessica (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05