Matching Items (50)
153807-Thumbnail Image.png
Description
Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust

Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust and fail proof signal processing and machine learning modules which operate on the raw EEG signals and estimate the current thought of the user.

In this thesis, several techniques used to perform EEG signal pre-processing, feature extraction and signal classification have been discussed, implemented, validated and verified; efficient supervised machine learning models, for the EEG motor imagery signal classification are identified. To further improve the performance of system unsupervised feature learning techniques have been investigated by pre-training the Deep Learning models. Use of pre-training stacked autoencoders have been proposed to solve the problems caused by random initialization of weights in neural networks.

Motor Imagery (imaginary hand and leg movements) signals are acquire using the Emotiv EEG headset. Different kinds of features like mean signal, band powers, RMS of the signal have been extracted and supplied to the machine learning (ML) stage, wherein, several ML techniques like LDA, KNN, SVM, Logistic regression and Neural Networks are applied and validated. During the validation phase the performances of various techniques are compared and some important observations are reported. Further, deep Learning techniques like autoencoding have been used to perform unsupervised feature learning. The reliability of the features is analyzed by performing classification by using the ML techniques mentioned earlier. The performance of the neural networks has been further improved by pre-training the network in an unsupervised fashion using stacked autoencoders and supplying the stacked autoencoders’ network parameters as initial parameters to the neural network. All the findings in this research, during each phase (pre-processing, feature extraction, classification) are directly relevant and can be used by the BCI research community for building motor imagery based BCI applications.

Additionally, this thesis attempts to develop, test, and compare the performance of an alternative method for classifying human driving behavior. This thesis proposes the use of driver affective states to know the driving behavior. The purpose of this part of the thesis was to classify the EEG data collected from several subjects while driving simulated vehicle and compare the classification results with those obtained by classifying the driving behavior using vehicle parameters collected simultaneously from all the subjects. The objective here is to see if the drivers’ mental state is reflected in his driving behavior.
ContributorsManchala, Vamsi Krishna (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2015
156321-Thumbnail Image.png
Description
The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value

The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.
ContributorsNichols, Kevin William (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Brad (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
ContributorsCasanova, Lucas Montgomery (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
156250-Thumbnail Image.png
Description
Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of the systems, and simulation models were constructed to validate the

Recent research and study have showed the potential of auto-parametric system in controlling stability and parametric resonance. In this project, two different designs for auto-parametrically excited mass-spring-damper systems were studied. The theoretical models were developed to describe the behavior of the systems, and simulation models were constructed to validate the analytical results. The error between simulation and theoretical results was within 2%. Both theoretical and simulation results showed that the implementation of auto-parametric system could help reduce or amplify the resonance significantly.
ContributorsLe, Thao (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Brad (Committee member) / Arizona State University (Publisher)
Created2018
155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyuglae (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2017
157187-Thumbnail Image.png
Description
One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to

One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these challenges by utilizing a ‘microbeam’ as the vibrating element. These microbeams can then be actuated using only one microcontroller pin connected to a speaker or surface transducer. This approach could solve the low-resolution problem currently present in all haptic displays. In this paper, the results of an investigation into the manufacturability of such a device, simulation of the vibrational characteristics, and prototyping and experimental validation of the device concept are presented. The possible reasons of the frequency shift between the result of the forced or free response of beams and the frequency calculated based on a lumped mass approximation are investigated. It is found that one of the important reasons for the frequency shift is the size effect, the dependency of the elastic modulus on the size and kind of material. This size effect on A2 tool steel for Micro-Meso scale cantilever beams for the proposed system is investigated.
ContributorsWi, Daehan (Author) / SODEMANN, ANGELA A (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2019
156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
ContributorsChinimilli, Prudhvi Tej (Author) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
134694-Thumbnail Image.png
Description
The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a panel of professional engineers to show why the team's design

The SAE Baja series is a competition that challenges university student teams on all aspects of designing, building, and testing an all-terrain vehicle. In the competition, the teams present their engineering analysis of all components of their vehicle to a panel of professional engineers to show why the team's design is the overall best in performance and in manufacturing cost. Currently Arizona State University's SAE Baja team does not have a method to analyze their vehicle's suspension system, especially on the car's shock absorbers. The current solution to this problem is to change the shock absorber parameters, test drive the car, and repeat the shock absorber tuning until the car is able to produce the performance that the team desires. The following paper introduces and demonstrates three different methods, ADAMS Car, SOLIDWORKS, and MATLAB, that can be used to analyze the suspension system and gather data that can be used in the competition presentation. ADAMS Car is a power software that is used in the automotive and other engineering fields. The program does have a steep learning curve, but once the team is comfortable using it, ADAMS is very helpful with subsystem analysis and full body analysis. SOLIDWORKS can be used to perform motion analysis and drop tests, which can then be exported into ADAMS for further analysis. MATLAB can be used to model the Baja vehicle as a quarter model, which makes it easier for the team to model. Using the methods presented in this paper, ASU's Baja team can test coil-over and air shock absorbers to determine which type is more suitable for the performance and overall cost of the whole vehicle.
ContributorsPerez, Marcos (Author) / Contes, James (Thesis director) / Redkar, Sangram (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153635-Thumbnail Image.png
Description
A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of

A control method based on the phase angle is used to control oscillating systems. The phase oscillator uses the sine and cosine of the phase angle to change key properties of a mass-spring-damper system, including amplitude, frequency, and equilibrium. An inverted pendulum is used to show a further application of the phase oscillator. Two methods of control based on the phase oscillator are used for swing-up and balancing of the pendulum. The first control method involves two separate stages. The scenarios where this control works are discussed. The second control method uses variable coefficients to result in a smooth transition between swing-up and balancing.
ContributorsBates, Andrew (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2015
155003-Thumbnail Image.png
Description
The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos during various processing operations like compression, transmission, storage etc. Objective

The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos during various processing operations like compression, transmission, storage etc. Objective Image Quality Assessment (IQA) algorithms have been developed that predict quality scores which match well with human subjective quality assessment. However, a lot of research still remains to be done before IQA algorithms can be deployed in real world systems. Long runtimes for one frame of image is a major hurdle. Graphics Processing Units (GPUs), equipped with massive number of computational cores, provide an opportunity to accelerate IQA algorithms by performing computations in parallel. Indeed, General Purpose Graphics Processing Units (GPGPU) techniques have been applied to a few Full Reference IQA algorithms which fall under the. We present a GPGPU implementation of Blind Image Integrity Notator using DCT Statistics (BLIINDS-II), which falls under the No Reference IQA algorithm paradigm. We have been able to achieve a speedup of over 30x over the previous CPU version of this algorithm. We test our implementation using various distorted images from the CSIQ database and present the performance trends observed. We achieve a very consistent performance of around 9 milliseconds per distorted image, which made possible the execution of over 100 images per second (100 fps).
ContributorsYadav, Aman (Author) / Sohoni, Sohum (Thesis advisor) / Aukes, Daniel (Committee member) / Redkar, Sangram (Committee member) / Arizona State University (Publisher)
Created2016