Matching Items (36)
172700-Thumbnail Image.png
Description

To study human evolution, researchers sometimes use microstructures found in human teeth and their knowledge of the processes by which those structures grow. Human fetusus begin to develop teeth in utero. As teeth grow, they form a hard outer substance, called enamel, through a process called amelogenesis. During amelogenesis, incremental

To study human evolution, researchers sometimes use microstructures found in human teeth and their knowledge of the processes by which those structures grow. Human fetusus begin to develop teeth in utero. As teeth grow, they form a hard outer substance, called enamel, through a process called amelogenesis. During amelogenesis, incremental layers of enamel form in a Circadian rhythm. This rhythmic deposition leaves the enamel with microstructures, called cross-striations and striae of Retzius, which have a regular periodicity. Because enamel is not renewed throughout life like other tissues, teeth preserve the timing and details of a person's growth and development. Thus, enamel microstructures, from living people and from fossilized teeth, can be used to reconstruct the growth, development, and life histories of current and past humans. Researchers can also compare current and fossilized microstructures to trace changes in those traits over the course of human evolution.

Created2013-03-28
172807-Thumbnail Image.png
Description

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body. The endothelium responds to signals from its surrounding environment to help regulate functions like the resistance that blood vessels need to pump blood through the body (vasomotor tone), the policing of substances trying to enter or exit the blood vessel (blood vessel permeability), and the ability of blood to clot (hemostasis). In addition to diseases like atherosclerosis, endothelium has been indicated as a component in pathologies like cancer, asthma, diabetes, hepatitis, multiple sclerosis, and sepsis. The shape, size, and appearance of endothelial cells, called their phenotypes, vary depending upon which part of the body the cells are from, a property called phenotypic heterogeneity. The endothelium, its properties, and its responses to stimuli are governed largely by the local environment of the cells.

Created2014-01-28
172813-Thumbnail Image.png
Description

In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans, but he was also a natural historian and theorist. Blumenbach

In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans, but he was also a natural historian and theorist. Blumenbach argued for theories of the transformation of species, or the claim that new species can develop from existing forms. His theory of Bildungstrieb (formative drive), a developmental force within all organisms, influenced the conceptual debates among many late nineteenth and early twentieth century embryologists and naturalists.

Created2014-01-22
172816-Thumbnail Image.png
Description

James William Kitching collected and studied fossils of dinosaurs and early humans in the twentieth century. He worked at the Bernard Price Institute for Paleontological Research in South Africa. During the fifty-three years he worked at the institute, Kitching spent eighteen of those in the field uncovering fossils. Kitching recovered

James William Kitching collected and studied fossils of dinosaurs and early humans in the twentieth century. He worked at the Bernard Price Institute for Paleontological Research in South Africa. During the fifty-three years he worked at the institute, Kitching spent eighteen of those in the field uncovering fossils. Kitching recovered fossils of early human ancestors, later called Australopithecines, as well as fossils of dinosaurs and ancient mammals. When he died in 2003, the Bernard Price Institute housed one of the largest fossil collections in the southern hemisphere. Kitching and his team had collected most of those fossils. Additionally, he helped discover Massospondylus embryos, the first dinosaur embryos ever recovered, which enabled scientists to examine dinosaurs before birth.

Created2015-03-31
172823-Thumbnail Image.png
Description

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck Institute for Evolutionary
Anthropology in Leipzig, Germany, named the fossil DIK 1-1 and nicknamed
it Dikika baby after the Dikika research site. The Dikika fossil
preserves much of the skull, including the jaw and teeth, which enabled
scientists to study the teeth microstructures and to reconstruct the
pace at which individuals of the hominin A. afarensis
developed.

Created2015-02-02
172824-Thumbnail Image.png
Description

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings. The eggshell protects the developing embryo, enables gas exchange between the embryo and the environment external to the egg, and the internal components of the egg provide nutrients for the embryo. Those external and internal features that support a developing embryo leave their mark on eggshells. Dinosaur egg parataxonomy classifies those characteristics and provides insight into dinosaur egg-laying behaviors, reproductive physiology, and embryonic development.

Created2015-03-23
Description

The Edinburgh Mouse Atlas, also called the e-Mouse Atlas Project (EMAP), is an online resource comprised of the e-Mouse Atlas (EMA), a detailed digital model of mouse development, and the e-Mouse Atlas of Gene Expression (EMAGE), a database that identifies sites of gene expression in mouse embryos. Duncan Davidson and

The Edinburgh Mouse Atlas, also called the e-Mouse Atlas Project (EMAP), is an online resource comprised of the e-Mouse Atlas (EMA), a detailed digital model of mouse development, and the e-Mouse Atlas of Gene Expression (EMAGE), a database that identifies sites of gene expression in mouse embryos. Duncan Davidson and Richard Baldock founded the project in 1992, and the Medical Research Council (MRC) in Edinburgh, United Kingdom, funds the project. Davidson and Baldock announced the project in an article titled A Real Mouse for Your Computer, citing the need to manage and analyze the volume of data that overwhelmed developmental biologists. Though EMAP resources were distributed via CD-ROM in the early years, the project moved increasingly online by the early 2000s, and into the early decades of the twenty-first century, was in active development. EMAP can be utilized as a developmental biology teaching resource and as a research tool that enables scientists to explore annotated 3D virtual mouse embryos. EMAP's goal is to illuminate the molecular basis of tissue differentiation.

Created2014-06-11
Description

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes. Beadle and Tatum's experiments provided an early link between genetics and the field of molecular biology.

Created2014-06-11
172776-Thumbnail Image.png
Description

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or
proliferation of the NCCs. There are many neurocristopathies
that affect many different types of systems. Some neurocristopathies
result in albinism (piebaldism) and cleft palate in humans. Various
pigment, skin, thyroid, and hearing disorders, craniofacial and heart
abnormalities, malfunctions of the digestive tract, and tumors can be
classified as neurocristopathies. This classification ties a variety of
disorders to one embryonic origin.

Created2014-09-19
172777-Thumbnail Image.png
Description

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops.

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle. The diversity of NCCs that the neural crest produces has led researchers to propose the neural crest as a fourth germ layer, or one of the primary cellular structures in early embryos from which all adult tissues and organs arise. Furthermore, evolutionary biologists study the neural crest because it is a novel shared evolutionary character (synapomorphy) of all vertebrates.

Created2014-09-15