Matching Items (37)
Filtering by

Clear all filters

148190-Thumbnail Image.png
Description

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their foundation and the source of the theory of the four humors and anatomical beliefs. This paper will analyze the effect of cultural, societal, and historical influences on the medical doctrines of Muslim medieval physicians in the Golden Age and the works of the Roman physician Galen, and demonstrate how these effects result in similarities and differences in medical practice and the understanding of disease and anatomy. Due to translation efforts that were supported by religious views on the accumulation of knowledge and the efforts of the Abbasid empire, resultant acceptance of the theory of the four humors and anatomical doctrines is observed in the treatment and perception of disease, which would consist of this paper's focus on surgery, diet therapy and associations with nature. However, with further analysis of the extent of this acceptance and the findings in the Islamic medical doctrines, the differences in experimental methods, religious interpretations, and cultural attitudes shows a deviation from the Galenic tradition, with the second set of the paper's focus being human dissection, cause of disease, and experimentation. The purpose of this research is to demonstrate the impact of religion, societal attitudes, culture and the accepted paradigm on the practice of medicine and the study of anatomy, and what would cause a challenge against the legacy of Galen.

Created2021-05
136157-Thumbnail Image.png
Description
Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence

Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence of CCD. Fungicides have received less research attention compared to insecticides, despite the fact that fungicide application coincides with bloom and the presence of bees. Pristine fungicide is widely used in agriculture and is commonly found as a residue in hives. Several studies have concluded that Pristine can be used without harming bees, but reports of brood loss following Pristine application continue to surface across the country. The primary objectives of this study were to determine whether Pristine causes an aversive gustatory response in bees and whether consumption of an acute dose affects responsiveness to sucrose. An awareness of how foragers interact with contaminated food is useful to understand the likelihood that Pristine is ingested and how that may affect bees' ability to evaluate floral resources. Our results indicated that Pristine has no significant effect on gustatory response or sucrose responsiveness. There was no significant difference between bee responses to Pristine contaminated sucrose and sucrose alone, and no significant effect of Pristine on sucrose responsiveness. These results indicate that honey bees do not have a gustatory aversion to Pristine. A lack of aversion means that honey bees will continue collecting contaminated resources and dispersing them throughout the colony where it can affect brood and clean food stores.
ContributorsMcHugh, Cora Elizabeth (Co-author) / Jernigan, Christopher (Co-author, Committee member) / Burden, Christina (Co-author) / DeGrandi-Hoffman, Gloria (Co-author) / Smith, Brian (Thesis director) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2015-05
136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
ContributorsWoell, Dana Marie (Author) / Reyes del Valle, Jorge (Thesis director) / Nickerson, Cheryl (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136024-Thumbnail Image.png
Description
Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This

Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This study proposed to evaluate the biology of HPV-16 in head and neck tumors by using RT-qPCR to measure the RNA expression and its relation to physical status of the virus. Methods: This study was to develop an assay that uses RT-qPCR to determine the quantitative expression of HPV-16 RNA coding for proteins E1, E2, E4, E5, E6, and E7 in tumor samples. The assay development started with creation of primers. It went on to test the primers on template DNA through traditional PCR and then on DNA from HPV-16 positive cell lines, SiHa and CaSki, using RT-qPCR. This paper also describes the troubleshooting methods taken for the PCR reaction. Once the primers are verified, the RT-qPCR process can be carried out on RNA purified from tumor samples. Results: No primer sets have been confirmed to produce a product through PCR or RT-qPCR. The primer sequences match up correctly with known sequences for HPV-16 E1, E2, E4, E5, E6, and E7. RT-qPCR showed results consistent with the hypothesis. Conclusion: The RT-qPCR protocol must be optimized to confirm the primer sequences work as desired. Then primers will be used to study physical status and RNA expression in HPV-positive and HPV-negative head and neck tumor samples. This assay can help shed light on which proteins are expressed most in tumors of the head and neck and will aid in the development of future screening and treatment options.
ContributorsKhazanovich, Jakob (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Sundaresan, Sri Krishna (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135879-Thumbnail Image.png
Description
This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could

This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could theoretically see. The hypothesis was then that bees would have a visual threshold where patterns with spatial frequencies that fall below this line should be easily distinguishable, and patterns above the threshold would have scores that mimic if the bees made choices randomly. There were 9 patterns tested, all with different spatial frequencies and in the colors of black, white, and gray. The bees were tested on their learning and pattern differentiation abilities with 10 pattern comparisons, with the lower frequency of the two being associated with an unscented sucrose solution reward. The results were surprising in that the previous studies pointing towards this visual threshold were inaccurate because of some of the patterns being learning in an intermediate ability. These intermediate scores suggest that the calculations predicting what the bees could see clearly were slightly wrong because it was more likely that the bees saw those images in more of a blur, which resulted in their intermediate score. Honeybees have served as a useful model organisms over the decades with studying learning involving visual information. This study lacked in its total numbers of trials and bees tested, which could have led to incomplete results, and this showing of an intermediate score and ability. Future studies should continue in order to advance this understanding of a perceptually and cognitively advance processing animal.
ContributorsBalsino, Brandon Bartholomew (Author) / Harrison, Jon (Thesis director) / Smith, Brian (Committee member) / Duell, Meghan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136684-Thumbnail Image.png
Description
microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is

microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is not fully understood and yet it is a major contributor to a pleth- ora of diseases, including neurological disorders, muscular disorders, and cancer. Cer- tain model organisms are valuable in understanding the function of miRNA and there- fore fully understanding the biological significance of miRNA targeting. Here I report a mechanistic analysis of miRNA targeting in C. elegans, and a bioinformatic approach to aid in further investigation of miRNA targeted sequences. A few of the biologically significant mechanisms discussed in this thesis include alternative polyadenylation, RNA binding proteins, components of the miRNA recognition machinery, miRNA secondary structures, and their polymorphisms. This thesis also discusses a novel bioinformatic approach to studying miRNA biology, including computational miRNA target prediction software, and sequence complementarity. This thesis allows a better understanding of miRNA biology and presents an ideal strategy for approaching future research in miRNA targeting.
ContributorsWeigele, Dustin Keith (Author) / Mangone, Marco (Thesis director) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-12
137009-Thumbnail Image.png
Description
The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used to develop a complete roster of medicinal benefits. Research regarding the cellular protein receptors that bind the cannabinoids may not only help provide reasons explaining why the Cannabis plant could be medicinally relevant, but will also help explain how the receptors originated. The receptors may have been present in organisms before the present day Cannabis plant. So why would there be receptors that bind to cannabinoids? Searching for an endocannabinoid system could help explain the purpose of the cannabinoid receptors and their current structures in humans. Using genetic technologies we are able to take a closer look into the evolutionary history of cannabinoids and the receptors that bind them.
ContributorsSalasnek, Reed Samuel (Author) / Capco, David (Thesis director) / Mangone, Marco (Committee member) / Stump, Edmund (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05