Matching Items (237)
148135-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsGarciapena, Danae (Co-author) / Aguiar, Lara (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / College of Health Solutions (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148136-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsAguiar, Lara (Co-author) / Garciapeña, Danae (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis includes three separate documents: a) a comprehensive document detailing the methods and analysis of the creative factors tied to series success, b) an hour long pilot script based on this data, and c) an industry-standard pitch deck for a TV show created with data insights. In a larger

This thesis includes three separate documents: a) a comprehensive document detailing the methods and analysis of the creative factors tied to series success, b) an hour long pilot script based on this data, and c) an industry-standard pitch deck for a TV show created with data insights. In a larger sense, the aim of this study is to take the first steps in remedying information asymmetry between streaming services and content creators. If streaming services were more transparent with their data and communicated to their creators what has been proven to work in the past, showrunners and staff writers could have a new tool to increase the competitiveness of their series and aid in show renewal each year.

ContributorsQuenon, Genevieve (Author) / Shin, Donghyuk (Thesis director) / Saywell, Jesse (Committee member) / The Sidney Poitier New American Film School (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148027-Thumbnail Image.png
Description

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.

ContributorsScheller, Jessica Rose (Author) / Reynolds, Stephen (Thesis director) / Johnson, Julia (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147988-Thumbnail Image.png
Description

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some

Stardust grains can provide useful information about the Solar System environment before the Sun was born. Stardust grains show distinct isotopic compositions that indicate their origins, like the atmospheres of red giant stars, asymptotic giant branch stars, and supernovae (e.g., Bose et al. 2010). It has been argued that some stardust grains likely condensed in classical nova outbursts (e.g., Amari et al. 2001). These nova candidate grains contain 13C, 15N and 17O-rich nuclides which are produced by proton burning. However, these nuclides alone cannot constrain the stellar source of nova candidate grains. Nova ejecta is rich in 7Be that decays to 7Li (which has a half-life of ~53 days). I want to measure 6,7Li isotopes in nova candidate grains using the NanoSIMS 50L (nanoscale secondary ion mass spectrometry) to establish their nova origins without ambiguity. Several stardust grains that are nova candidate grains were identified in meteorite Acfer 094 on the basis of their oxygen isotopes. The identified silicate and oxide stardust grains are <500 nm in size and exist in the meteorite surrounded by meteoritic silicates. Therefore, 6,7Li isotopic measurements on these grains are hindered because of the large 300-500 nm oxygen ion beam in the NanoSIMS. I devised a methodology to isolate stardust grains by performing Focused Ion Beam milling with the FIB – Nova 200 NanoLab (FEI) instrument. We proved that the current FIB instrument cannot be used to prepare stardust grains smaller than 1 𝜇m due to lacking capabilities of the FIB. For future analyses, we could either use the same milling technique with the new and improved FIB – Helios 5 UX or use the recently constructed duoplasmatron on the NanoSIMS that can achieve a size of ~75 nm oxygen ion beam.

ContributorsDuncan, Ethan Jay (Author) / Bose, Miatrayee (Thesis director) / Starrfield, Sumner (Committee member) / Desch, Steve (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Media Mentality is a media education resource website designed to aid students in early career development. This project was developed with a few goals in mind: improve accessibility, provide opportunity and inspire a new generation of the workforce. We wanted to level the playing field as students enter undergraduate programs

Media Mentality is a media education resource website designed to aid students in early career development. This project was developed with a few goals in mind: improve accessibility, provide opportunity and inspire a new generation of the workforce. We wanted to level the playing field as students enter undergraduate programs with varying degrees of experience. We see this website as an opportunity for interested parties to continue the research and add to the wealth of knowledge in a student worker role. The hope is that students, particularly freshman and first-year transfer students will utilize the site, expand their horizons, learn about all the career opportunities available to them, and push the envelope when it comes to the curriculum taught at Arizona State University. Visit www.mediamentality.com

ContributorsSaulnier, Sedona Rose (Co-author) / Ferrigno, Jessica (Co-author) / Jacoby, Jim (Thesis director) / Scott, Jason (Committee member) / The Sidney Poitier New American Film School (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05