Matching Items (246)
137278-Thumbnail Image.png
Description
Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs

Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs within and across diverse cultures and comparisons between cultural and scientific models. A cultural consensus analysis was employed to identify a "culturally correct" model for each study site. Next, a scientific model was generated based on current scientific consensus regarding climate change- disease connections. Using the Quadratic Assignment Procedure (QAP), we determined the amount of correlation shared between the scientific model and each cultural model. The analysis revealed a high level of intercorrelation between the models of English speaking, economically developed sites such as Phoenix, Arizona. Additionally, cultural models from the non-English speaking sites were highly intercorrelated with one another. Overall, the English speaking sites tended to have more complex models with a greater density of causal links. Cultural models from the English speaking sites also demonstrated high levels of correlation with the scientific model. In comparison, the cultural models from the non-English speaking sites exhibited little correlation with the scientific model. Based on these findings, we suggest that cultural beliefs related to climate change-related disease causation may be influenced by complex local factors. For example, differences in education and media influences along with localized differences in climate change impacts may, in part, contribute to divergences between the cultural models.
Created2014-05
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136390-Thumbnail Image.png
Description
There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order to determine the pressure, temperature, source composition, and method of melting that lead to the production of melt in the mantle below Lassen. To this aim, a suite of primitive basalts (i.e. SiO2<52 and Mg#>65) are corrected for fractional crystallization by adding minerals back to the bulk rock composition with the goal of returning them to a primary composition in equilibrium with the mantle. Thermobarometry of the primary melt compositions is conducted to determine temperature and pressure of melting, in addition to a forward mantle modeling technique to simulate mantle melting at varying pressures to constrain source composition and method of melting (batch vs. fractional). The results from the two techniques agree on an average depth of melt extraction of 36 km and a source composition similar to that of depleted mantle melted by batch melting. Although attempted for both calc-alkaline and tholeiitic basalts, the fractional crystallization correction and thus the pressure-temperature calculations were only successful for tholeiitic basalts due to the hydrous nature of the calc-alkaline samples. This leaves an opportunity to repeat this study with parameters appropriate for hydrous basalts, allowing for the comparison of calc-alkaline and tholeiitic melting conditions.
ContributorsSheppard, Katherine Davis (Author) / Till, Christy (Thesis director) / Hervig, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2015-05
136239-Thumbnail Image.png
Description
In an effort to gauge on-campus resident's satisfaction with services provided by Century Link and the University Technology Office as well as understand the resident's technology usage habits, the Performance Based Research Studies Group at ASU conducted a survey to collect the data needed to initiate improvements. Unlike previous years,

In an effort to gauge on-campus resident's satisfaction with services provided by Century Link and the University Technology Office as well as understand the resident's technology usage habits, the Performance Based Research Studies Group at ASU conducted a survey to collect the data needed to initiate improvements. Unlike previous years, the 2015 edition of the survey was distributed more efficiently by engaging University Housing staff members (those who work closest with the residents). The result was a 288% increase in responses from the previous year, totaling 2352 respondents and a 167% increase in the number of Residential Halls surveyed, totaling 24. As a primary concern, on a scale of zero to five, the average Internet satisfaction rating was 2.42. In the comments section residents reported issues with the reliability and speed of the ASU networks. It was further determined that residents were dissatisfied with the television services with an average satisfaction rating of 2.91; and the vast majority of comments regarding television services demanding that the ESPN channels be provided. In addition to the metrics on resident satisfaction, it was found that the majority of on-campus residents do not utilize hard-wired ports. Based on the information gathered from this survey, it is recommended that the University Technology Office: 1) focus efforts on upgrading, expanding, and improving the existing ASU networks in particular the reliability and speed of those networks, 2) invest in a broader channel line-up to at minimum provide the ESPN channels, and 3) start an awareness campaign to educate residents on the usage of hard wired ports with the goal of increasing hard wired port usage. As a corollary to information gathered from the survey, it is possible to begin building technology usage profiles on each building and even building such profiles on each residential college and academic unit to better understand the clientele and adapt the services a necessary.
ContributorsMcculloch, John Patrick (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136582-Thumbnail Image.png
Description
Batman is one of the most iconic characters in the history of popular culture. Ever since his creation in 1939, the character and his stories have gone through several changes. In my thesis, I explore and analyze the character within the nearly 20-year period in which he went through the

Batman is one of the most iconic characters in the history of popular culture. Ever since his creation in 1939, the character and his stories have gone through several changes. In my thesis, I explore and analyze the character within the nearly 20-year period in which he went through the most significant changes (1968-1986). Overall, these changes can be summarized as a shift from a lighthearted superhero consistently placed in campy situations to a dark and brooding vigilante who brutally dispatches his enemies. While analyzing the different versions of this character in this period of time, I reference the conclusions of two scholars: Travis Langley and Chuck Tate. Langley wrote a general psychological analysis of Batman by considering the essential characteristics of the character found in all forms of media. Tate concluded that Batman only uses hostile aggression for the sake of deriving pleasure form the pain he causes to criminals. After analyzing the comics as my primary sources, I have concluded that the general findings of Tate and Langley actually ignore the subtle details of changes in the humanity and self-awareness of the character through time. The lighthearted version of Batman in the late 60's is actually a self-obsessed narcissist, but as time passes, the darker mood of the character can be attributed to an increased acknowledgment of the destructive nature of his unique lifestyle. As the character grows more accepting of himself and his own reasons for continuing this lifestyle, his motivations become less self-centered. Overall, the central change of the character throughout time can be traced back to the status of his inner conflict between normal, human desires and the pure desire for constant vengeance.
ContributorsRivera-Passapera, Hiram Alfonso (Author) / Martin, Thomas (Thesis director) / Miller, April (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
Description

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach for exploring outer space and also an educational app where the user can learn more about objects as they visit them.

ContributorsSadachar, Shivam (Author) / O'Rourke, Joseph (Thesis director) / Loyd, Parke (Committee member) / Melodie, Kao (Committee member) / Computer Science and Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147755-Thumbnail Image.png
Description

An analysis of the medical the efficacy of MDMA, Psilocybin and LSD as a method of determining the need for psychedelic-based psychotherapy treatments as novel treatments for various psychiatric disorders and how those treatments will be inducted into the United States in various formats including healthcare, federal law and social

An analysis of the medical the efficacy of MDMA, Psilocybin and LSD as a method of determining the need for psychedelic-based psychotherapy treatments as novel treatments for various psychiatric disorders and how those treatments will be inducted into the United States in various formats including healthcare, federal law and social acceptance.

ContributorsHagood, Madison (Author) / Martin, Thomas (Thesis director) / Olive, Foster (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147674-Thumbnail Image.png
Description

The COVID-19 pandemic has forced educators since 2020 to shift from all in-person learning to virtual learning through applications like Zoom. Students are now part of a collage of faces including their teachers’ who often may be dealing with technical glitches, foreign-looking interfaces, and unintentionally disruptive students. On the other

The COVID-19 pandemic has forced educators since 2020 to shift from all in-person learning to virtual learning through applications like Zoom. Students are now part of a collage of faces including their teachers’ who often may be dealing with technical glitches, foreign-looking interfaces, and unintentionally disruptive students. On the other side, students may struggle to find a stable working environment as they learn from home. Distance learning has been explored well before 2020, but its necessity, given the nature of a virus that preys on in-person interaction, has forced itself to the top of relevant conversation. . The issues with distance learning in primary education have roots in long standing issues with the education system as a whole. Without greater public awareness of the woes in our education system, the status quo of declining academic success, teacher salaries, and increasing classroom sizes will continue in the future. The problems with distance learning specifically represent a much more everlasting issue that is lack of accountability and action of lawmakers who are able to make these reforms.

ContributorsManuel, Aditya Thomas (Author) / Martin, Thomas (Thesis director) / Weinman, Melissa (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05