Matching Items (77)
152152-Thumbnail Image.png
Description
The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I

The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I utilize Sam Harris's The Moral Landscape, a general audience science book on the particularly thorny topic of neuroscientific approaches to morality, as a case-study to explore the possibility of using general audience science books as models for science communication more broadly. I conduct a literary analysis of the text that delimits the scope of its project, its intended audience, and the domains of science to be communicated. I also identify seven literary aspects of the text: three positive aspects that facilitate clarity and four negative aspects that interfere with lay public engagement. I conclude that The Moral Landscape relies on an assumed knowledge base and intuitions of its audience that cannot reasonably be expected of lay audiences; therefore, it cannot properly be construed as popular science communication. It nevertheless contains normative lessons for the broader science project, both in literary aspects to be salvaged and literary aspects and concepts to consciously be avoided and combated. I note that The Moral Landscape's failings can also be taken as an indication that typical descriptions of science communication offer under-detailed taxonomies of both audiences for science communication and the varieties of science communication aimed at those audiences. Future directions of study include rethinking appropriate target audiences for science literacy projects and developing a more discriminating taxonomy of both science communication and lay publics.
ContributorsJohnson, Nathan W (Author) / Robert, Jason S (Thesis advisor) / Creath, Richard (Committee member) / Martinez, Jacqueline (Committee member) / Sylvester, Edward (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
152722-Thumbnail Image.png
Description
The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of

The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of the ant Temnothorax rugatulus. Physically tiny with small population sizes, these cavity-dwelling ants provide a good model system to explore the mechanisms and ultimate origins of collective behavior in insect societies. My studies showed that colonies robustly exploit sugar water. Given a choice between feeders unequal in quality, colonies allocate more foragers to the better feeder. If the feeders change in quality, colonies are able to reallocate their foragers to the new location of the better feeder. These qualities of flexibility and allocation could be explained by the nature of positive feedback (tandem run recruitment) that these ants use. By observing foraging colonies with paint-marked ants, I was able to determine the `rules' that individuals follow: foragers recruit more and give up less when they find a better food source. By altering the nutritional condition of colonies, I found that these rules are flexible - attuned to the colony state. In starved colonies, individual ants are more likely to explore and recruit to food sources than in well-fed colonies. Similar to honeybees, Temmnothorax foragers appear to modulate their exploitation and recruitment behavior in response to environmental and social cues. Finally, I explored the influence of ecology (resource distribution) on the foraging success of colonies. Larger colonies showed increased consistency and a greater rate of harvest than smaller colonies, but this advantage was mediated by the distribution of resources. While patchy or rare food sources exaggerated the relative success of large colonies, regularly (or easily found) distributions leveled the playing field for smaller colonies. Social foraging in ant societies can best be understood when we view the colony as a single organism and the phenotype - group size, communication, and individual behavior - as integrated components of a homeostatic unit.
ContributorsShaffer, Zachary (Author) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2014
153134-Thumbnail Image.png
Description
This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution

This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality.
ContributorsUlett, Mark Andrew (Author) / Laubichler, Manfred D (Thesis advisor) / Hall, Brian K (Committee member) / Lynch, John (Committee member) / Maienschein, Jane (Committee member) / Smocovitis, Vassiliki B (Committee member) / Arizona State University (Publisher)
Created2014
153154-Thumbnail Image.png
Description
During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological

During the 1960s, the long-standing idea that traits or behaviors could be

explained by natural selection acting on traits that persisted "for the good of the group" prompted a series of debates about group-level selection and the effectiveness with which natural selection could act at or across multiple levels of biological organization. For some this topic remains contentious, while others consider the debate settled, even while disagreeing about when and how resolution occurred, raising the question: "Why have these debates continued?"

Here I explore the biology, history, and philosophy of the possibility of natural selection operating at levels of biological organization other than the organism by focusing on debates about group-level selection that have occurred since the 1960s. In particular, I use experimental, historical, and synthetic methods to review how the debates have changed, and whether different uses of the same words and concepts can lead to different interpretations of the same experimental data.

I begin with the results of a group-selection experiment I conducted using the parasitoid wasp Nasonia, and discuss how the interpretation depends on how one conceives of and defines a "group." Then I review the history of the group selection controversy and argue that this history is best interpreted as multiple, interrelated debates rather than a single continuous debate. Furthermore, I show how the aspects of these debates that have changed the most are related to theoretical content and empirical data, while disputes related to methods remain largely unchanged. Synthesizing this material, I distinguish four different "approaches" to the study of multilevel selection based on the questions and methods used by researchers, and I use the results of the Nasonia experiment to discuss how each approach can lead to different interpretations of the same experimental data. I argue that this realization can help to explain why debates about group and multilevel selection have persisted for nearly sixty years. Finally, the conclusions of this dissertation apply beyond evolutionary biology by providing an illustration of how key concepts can change over time, and how failing to appreciate this fact can lead to ongoing controversy within a scientific field.
ContributorsDimond, Christopher C (Author) / Collins, James P. (Thesis advisor) / Gadau, Juergen (Committee member) / Laubichler, Manfred (Committee member) / Armendt, Brad (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2014
153365-Thumbnail Image.png
Description
Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select

Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select for warning signals that are easy to learn and recognize. Previous research demonstrates long-wavelength colors (e.g. red and yellow) are effective because they are readily detected and learned. However, a number of defended animals display short-wavelength coloration (e.g. blue and violet), such as the pipevine swallowtail butterfly (Battus philenor). The role of blue coloration in warning signals had not previously been explicitly tested. My research showed in laboratory experiments that curve-billed thrashers (Toxostoma curvirostre) and Gambel's quail (Callipepla gambelii) can learn and recognize the iridescent blue of B. philenor as a warning signal and that it is innately avoided. I tested the attack rates of these colors in the field and blue was not as effective as orange. I concluded that blue colors may function as warning signals, but the effectiveness is likely dependent on the context and predator.

Blue colors are often iridescent in nature and the effect of iridescence on warning signal function was unknown. I reared B. philenor larvae under varied food deprivation treatments. Iridescent colors did not have more variation than pigment-based colors under these conditions; variation which could affect predator learning. Learning could also be affected by changes in appearance, as iridescent colors change in both hue and brightness as the angle of illuminating light and viewer change in relation to the color surface. Iridescent colors can also be much brighter than pigment-based colors and iridescent animals can statically display different hues. I tested these potential effects on warning signal learning by domestic chickens (Gallus gallus domesticus) and found that variation due to the directionality of iridescence and a brighter warning signal did not influence learning. However, blue-violet was learned more readily than blue-green. These experiments revealed that the directionality of iridescent coloration does not likely negatively affect its potential effectiveness as a warning signal.
ContributorsPegram, Kimberly Vann (Author) / Rutowski, Ronald L (Thesis advisor) / Hoelldobler, Berthold (Committee member) / Liebig, Juergen (Committee member) / McGraw, Kevin (Committee member) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2015
150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150622-Thumbnail Image.png
Description
A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.
ContributorsDolezal, Adam G (Author) / Amdam, Gro V (Thesis advisor) / Brent, Colin S. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
134162-Thumbnail Image.png
Description
Insects have intricate systems they depend on for survival. They live in societies where every individual plays an important role. Ants are a great example of this observation. They are known for having structurally sound societies that ensure the livelihood of the colony. The ant species analyzed for this research,

Insects have intricate systems they depend on for survival. They live in societies where every individual plays an important role. Ants are a great example of this observation. They are known for having structurally sound societies that ensure the livelihood of the colony. The ant species analyzed for this research, Harpegnathos saltator, portrays a structured colony and serves as a useful example of levels of hierarchy. In the colony of H. saltator, one can find a queen, gamergates, workers, and male ants living underground in Southern India. Recording and analyzing egg-laying rates are important in this study because of the amount of information it provides. It is used especially when observing the relationship among the gamergates in colonies with varying colony sizes. Three different methods were used to record the egg-laying rates, each providing insight into valuable information. Results show that the smaller colonies with fewer identified gamergates do share an equal amount of egg-laying. In larger colonies, it appears that there are more active identified gamergates than others. Egg-laying duration times are smaller in colonies with fewer gamergates. It is also found that the presence of brood does not affect egg-laying rates and reproductive inhibition could be a possibility based on two of the colonies observed F65 and F21. Based on the data found, a more active colony that attempts to maintain stability by demonstrating aggression may be affecting the reproduction of gamergates. Future work that would further strengthen the research and conclusions made would involve further observation of colonies, both large and small, with varying numbers of gamergates. More observation involving behavior among gamergates and workers would also be beneficial. Mathematical modeling could also be incorporated to create equations that could determine information about colonies based on size, number of gamergates, and egg-laying rates.
ContributorsMayoral, Alejandra (Author) / Kang, Yun (Thesis director) / Liebig, Juergen (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12