Matching Items (15)
151748-Thumbnail Image.png
Description
For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding

For over a century, researchers have been investigating collective cognition, in which a group of individuals together process information and act as a single cognitive unit. However, I still know little about circumstances under which groups achieve better (or worse) decisions than individuals. My dissertation research directly addressed this longstanding question, using the house-hunting ant Temnothorax rugatulus as a model system. Here I applied concepts and methods developed in psychology not only to individuals but also to colonies in order to investigate differences of their cognitive abilities. This approach is inspired by the superorganism concept, which sees a tightly integrated insect society as the analog of a single organism. I combined experimental manipulations and models to elucidate the emergent processes of collective cognition. My studies show that groups can achieve superior cognition by sharing the burden of option assessment among members and by integrating information from members using positive feedback. However, the same positive feedback can lock the group into a suboptimal choice in certain circumstances. Although ants are obligately social, my results show that they can be isolated and individually tested on cognitive tasks. In the future, this novel approach will help the field of animal behavior move towards better understanding of collective cognition.
ContributorsSasaki, Takao (Author) / Pratt, Stephen C (Thesis advisor) / Amazeen, Polemnia (Committee member) / Liebig, Jürgen (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Hölldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2013
151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
152501-Thumbnail Image.png
Description
How a colony regulates the division of labor to forage for nutritional resources while accommodating for changes in colony demography is a fundamental question in the sociobiology of social insects. In honey bee, Apis mellifera, brood composition impacts the division of labor, but it is unknown if colonies adjust the

How a colony regulates the division of labor to forage for nutritional resources while accommodating for changes in colony demography is a fundamental question in the sociobiology of social insects. In honey bee, Apis mellifera, brood composition impacts the division of labor, but it is unknown if colonies adjust the allocation of foragers to carbohydrate and protein resources based on changes in the age demography of larvae and the pheromones they produce. Young and old larvae produce pheromones that differ in composition and volatility. In turn, nurses differentially provision larvae, feeding developing young worker larvae a surplus diet that is more queen-like in protein composition and food availability, while old larvae receive a diet that mimics the sugar composition of the queen larval diet but is restrictively fed instead of provided ad lib. This research investigated how larval age and the larval pheromone e-β ocimene (eβ) impact foraging activity and foraging load. Additional cage studies were conducted to determine if eβ interacts synergistically with queen mandibular pheromone (QMP) to suppress ovary activation and prime worker physiology for nursing behavior. Lastly, the priming effects of larval age and eβ on worker physiology and the transition from in-hive nursing tasks to outside foraging were examined. Results indicate that workers differentially respond to larvae of different ages, likely by detecting changes in the composition of the pheromones they emit. This resulted in adjustments to the foraging division of labor (pollen vs. nectar) to ensure that the nutritional needs of the colony's brood were met. For younger larvae and eβ, this resulted in a bias favoring pollen collection. The cage studies reveal that both eβ and QMP suppressed ovary activation, but the larval pheromone was more effective. Maturing in an environment of young or old larvae primed bees for nursing and impacted important endocrine titers involved in the transition to foraging, so bees maturing in the presence of larvae foraged earlier than control bees reared with no brood.
ContributorsTraynor, Kirsten S. (Author) / Page, Robert E. (Thesis advisor) / Hölldobler, Berthold (Committee member) / Pratt, Stephen (Committee member) / Liebig, Jürgen (Committee member) / Brent, Colin (Committee member) / Baluch, Page (Committee member) / Arizona State University (Publisher)
Created2014
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
136686-Thumbnail Image.png
Description
Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear

Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear recruitment pattern where a leading ant uses a short-ranged pheromone to direct a following ant to a target location (in tandem).The observed phenomenon of reverse tandem running (RTR), where a follower is lead from a target back to the home nest, has not been as extensively studied as forward tandem running and transportation recruitment activities. This study seeks to explain a potential reason for the presence of the RTR behavior; more specifically, the study explores the idea that reverse tandem run followers are being shown a specific route to the home nest by a highly experienced and efficient leading ant. Ten colonies had migrations induced experimentally in order to generate some reverse tandem running activity. Once an RTR has been observed, the follower and leader were studied for behavior and their pathways were analyzed. It was seen that while RTR paths were quite efficient (1.4x a straight line distance), followers did not experience a statistically significant improvement in their pathways between the home and target nests (based on total distance traveled) when compared to similar non-RTR ants. Further, RTR leading ants were no more efficient than other non-RTR ants. It was observed that some followers began recruiting after completion of an RTR, but the number than changed their behavior was not significant. Thus, the results of this experiment cannot conclusively show that RTR followers are utilizing reverse tandem runs to improve their routes between the home and target nests.
ContributorsColling, Blake David (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / Sasaki, Takao (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
137047-Thumbnail Image.png
Description
Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality

Evolutionary theory predicts that animal behavior is generally governed by decision rules (heuristics) which adhere to ecological rationality: the tendency to make decisions that maximize fitness in most situations the animal encounters. However, the particular heuristics used by ant colonies of the genus Temnothorax and their propensity towards ecological rationality are up for debate. These ants are adept at choosing a nest site, making a collective decision based on complex interactions between the many individual choices made by workers. Colonies will migrate between nests either upon the destruction of their current home or the discovery of a sufficiently superior nest. This study offers a descriptive analysis of the heuristics potentially used in nest-site decision-making. Colonies were offered a choice of nests characterized by the Ebbinghaus Illusion: a perceptual illusion which effectively causes the viewer to perceive a circle as larger when it is surrounded by small circles than when that same circle is surrounded by large circles. Colonies were separated into two conditions: in one, they were given the option to move to a high-quality nest surrounded by poor-quality nests, and in the other they were given the option to move to a high-quality nest surrounded by medium-quality nests. The colonies in the poor condition were found to be more likely to move to the good nest than were colonies in the medium condition at a statistically significant level. That is, they responded to the Ebbinghaus Effect in the way that is normally expected. This result was discussed in terms of its implications for the ecological rationality of the nest-site choice behavior of these ants.
ContributorsTalken, Lucas Warren (Author) / Pratt, Stephen (Thesis director) / Sasaki, Takao (Committee member) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
135002-Thumbnail Image.png
Description
Social insect colonies adeptly make consensus decisions that emerge from distributed interactions among colony members. How consensus is accomplished when a split decision requires resolution is poorly understood. I studied colony reunification during emigrations of the crevice-dwelling ant Temnothorax rugatulus. Colonies can choose the most preferred of several alternative nest

Social insect colonies adeptly make consensus decisions that emerge from distributed interactions among colony members. How consensus is accomplished when a split decision requires resolution is poorly understood. I studied colony reunification during emigrations of the crevice-dwelling ant Temnothorax rugatulus. Colonies can choose the most preferred of several alternative nest cavities, but the colony sometimes initially splits between sites and achieves consensus later via secondary emigrations. I explored the decision rules and the individual-level dynamics that govern reunification using artificially split colonies. When monogynous colonies were evenly divided between identical sites, the location of the queen played a decisive role, with 14 of the 16 colonies reuniting at the site that held the queen. This suggests a group-level strategy for minimizing risk to the queen by avoiding unnecessary moves. When the queen was placed in the less preferred of two sites, all 14 colonies that reunited did so at preferred nest, despite having to move the queen. These results show that colonies balance multiple factors when reaching consensus, and that preferences for physical features of environment can outweigh the queen's influence. I also found that tandem recruitment during reunification is overwhelmingly directed from the preferred nest to the other nest. Furthermore, the followers of these tandem runs had a very low probability (5.7%) of also subsequently conducting transports.
ContributorsDoering, Grant Navid (Author) / Pratt, Stephen (Thesis director) / Pavlic, Theodore P. (Committee member) / Sasaki, Takao (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022