Matching Items (2)
Filtering by

Clear all filters

129630-Thumbnail Image.png
Description

Similarly to the popular voter model, the Deffuant model describes opinion dynamics taking place in spatially structured environments represented by a connected graph. Pairs of adjacent vertices interact at a constant rate. If the opinion distance between the interacting vertices is larger than some confidence threshold epsilon > 0, then

Similarly to the popular voter model, the Deffuant model describes opinion dynamics taking place in spatially structured environments represented by a connected graph. Pairs of adjacent vertices interact at a constant rate. If the opinion distance between the interacting vertices is larger than some confidence threshold epsilon > 0, then nothing happens, otherwise, the vertices' opinions get closer to each other. It has been conjectured based on numerical simulations that this process exhibits a phase transition at the critical value epsilon(c) = 1/2. For confidence thresholds larger than one half, the process converges to a global consensus, whereas coexistence occurs for confidence thresholds smaller than one half. In this article, we develop new geometrical techniques to prove this conjecture.

ContributorsLanchier, Nicolas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012
129507-Thumbnail Image.png
Description

The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the framework of interacting particle systems in which players are located

The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the framework of interacting particle systems in which players are located on an infinite square lattice. In the presence of two strategies, and calling a strategy selfish or altruistic depending on a certain ordering of the coefficients of the underlying payoff matrix, a simple analysis of the nonspatial mean-field approximation of the spatial model shows that a strategy is evolutionary stable if and only if it is selfish, making the system bistable when both strategies are selfish. The spatial and nonspatial models agree when at least one strategy is altruistic. In contrast, we prove that in the presence of two selfish strategies and in any spatial dimension, only the most selfish strategy remains evolutionary stable. The main ingredients of the proof are monotonicity results and a coupling between the best-response dynamics properly rescaled in space with bootstrap percolation to compare the infinite time limits of both systems.

ContributorsEvilsizor, Stephen (Author) / Lanchier, Nicolas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-19