Matching Items (15)

135844-Thumbnail Image.png

Tracking sonic flows during fast head movements of marmoset monkeys

Description

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was tested to obtain binaural sound localization information during fast head movement of marmoset monkey. Analysis of binaural information was conducted with a focus on inter-aural level difference (ILD) and inter-aural time difference (ITD) at various head positions over time. The results showed that during fast head turns, the ITDs showed significant and clear changes in trajectory in response to low frequency stimuli. However, significant phase ambiguity occurred at frequencies greater than 2 kHz. Analysis of ITD and ILD information with animal vocalization as the stimulus was also tested. The results indicated that ILDs may provide more information in understanding the dynamics of head movement in response to animal vocalizations in the environment. The primary significance of this experimentation is the successful implementation of a system capable of simultaneously recording head movement and acoustic signals at the ear canals. The collected data provides insight into the usefulness of ITD and ILD as binaural cues during head movement.

Contributors

Agent

Created

Date Created
  • 2016-05

135494-Thumbnail Image.png

The Role of Visual Attention In Auditory Localization

Description

Hearing and vision are two senses that most individuals use on a daily basis. The simultaneous presentation of competing visual and auditory stimuli often affects our sensory perception. It is

Hearing and vision are two senses that most individuals use on a daily basis. The simultaneous presentation of competing visual and auditory stimuli often affects our sensory perception. It is often believed that vision is the more dominant sense over audition in spatial localization tasks. Recent work suggests that visual information can influence auditory localization when the sound is emanating from a physical location or from a phantom location generated through stereophony (the so-called "summing localization"). The present study investigates the role of cross-modal fusion in an auditory localization task. The focuses of the experiments are two-fold: (1) reveal the extent of fusion between auditory and visual stimuli and (2) investigate how fusion is correlated with the amount of visual bias a subject experiences. We found that fusion often occurs when light flash and "summing localization" stimuli were presented from the same hemifield. However, little correlation was observed between the magnitude of visual bias and the extent of perceived fusion between light and sound stimuli. In some cases, subjects reported distinctive locations for light and sound and still experienced visual capture.

Contributors

Agent

Created

Date Created
  • 2016-05

Track eye movement of human listeners in a spatial localization task

Description

To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound

To localize different sound sources in an environment, the auditory system analyzes acoustic properties of sounds reaching the ears to determine the exact location of a sound source. Successful sound localization is important for improving signal detection and speech intelligibility in a noisy environment. Sound localization is not a uni-sensory experience, and can be influenced by visual information (e.g., the ventriloquist effect). Vision provides contexts and organizes the auditory space for the auditory system. This investigation tracks eye movement of human subjects using a non-invasive eye-tracking system and evaluates the impact of visual stimulation on localization of a phantom sound source generated through timing-based stereophony. It was hypothesized that gaze movement could reveal the way in which visual stimulation (LED lights) shifts the perception of a sound source. However, the results show that subjects do not always move their gaze towards the light direction even when they experience strong visual capture. On average, the gaze direction indicates the perceived sound location with and without light stimulation.

Contributors

Created

Date Created
  • 2016-05

132795-Thumbnail Image.png

Let's Talk Monkey- Quantitative Analysis of Marmoset Monkey Calls

Description

The marmoset monkey (Callithrix jacchus) is a new-world primate species native to South America rainforests. Because they rely on vocal communication to navigate and survive, marmosets have evolved as a

The marmoset monkey (Callithrix jacchus) is a new-world primate species native to South America rainforests. Because they rely on vocal communication to navigate and survive, marmosets have evolved as a promising primate model to study vocal production, perception, cognition, and social interactions. The purpose of this project is to provide an initial assessment on the vocal repertoire of a marmoset colony raised at Arizona State University and call types they use in different social conditions. The vocal production of a colony of 16 marmoset monkeys was recorded in 3 different conditions with three repeats of each condition. The positive condition involves a caretaker distributing food, the negative condition involves an experimenter taking a marmoset out of his cage to a different room, and the control condition is the normal state of the colony with no human interference. A total of 5396 samples of calls were collected during a total of 256 minutes of audio recordings. Call types were analyzed in semi-automated computer programs developed in the Laboratory of Auditory Computation and Neurophysiology. A total of 5 major call types were identified and their variants in different social conditions were analyzed. The results showed that the total number of calls and the type of calls made differed in the three social conditions, suggesting that monkey vocalization signals and depends on the social context.

Contributors

Agent

Created

Date Created
  • 2019-05

156814-Thumbnail Image.png

A computational model for studying L1’s effect on L2 speech learning

Description

Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact

Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1 backgrounds. This dissertation hypothesizes that phonological distances between accented speech and speakers' L1 speech are also correlated with perceived accentedness, and the correlations are negative for some phonological properties. Moreover, contrastive phonological distinctions between L1s and L2 will manifest themselves in the accented speech produced by speaker from these L1s. To test the hypotheses, this study comes up with a computational model to analyze the accented speech properties in both segmental (short-term speech measurements on short-segment or phoneme level) and suprasegmental (long-term speech measurements on word, long-segment, or sentence level) feature space. The benefit of using a computational model is that it enables quantitative analysis of L1's effect on accent in terms of different phonological properties. The core parts of this computational model are feature extraction schemes to extract pronunciation and prosody representation of accented speech based on existing techniques in speech processing field. Correlation analysis on both segmental and suprasegmental feature space is conducted to look into the relationship between acoustic measurements related to L1s and perceived accentedness across several L1s. Multiple regression analysis is employed to investigate how the L1's effect impacts the perception of foreign accent, and how accented speech produced by speakers from different L1s behaves distinctly on segmental and suprasegmental feature spaces. Results unveil the potential application of the methodology in this study to provide quantitative analysis of accented speech, and extend current studies in L2 speech learning theory to large scale. Practically, this study further shows that the computational model proposed in this study can benefit automatic accentedness evaluation system by adding features related to speakers' L1s.

Contributors

Agent

Created

Date Created
  • 2018

153972-Thumbnail Image.png

Detect and analyze the 3-D head movement patterns in marmoset monkeys using wireless tracking system

Description

Head movement is a natural orienting behavior for sensing environmental events around us. Head movement is particularly important for identifying through the sense of hearing the location of an out-of-sight,

Head movement is a natural orienting behavior for sensing environmental events around us. Head movement is particularly important for identifying through the sense of hearing the location of an out-of-sight, rear-approaching target to avoid danger or threat. This research aims to design a portable device for detecting the head movement patterns of common marmoset monkeys in laboratory environments. Marmoset is a new-world primate species and has become increasingly popular for neuroscience research. Understanding the unique patterns of their head movements will improve its values as a new primate model for uncovering the neurobiology of natural orienting behavior. Due to their relatively small head size (5 cm in diameter) and body weight (300-500 g), the device has to meet several unique design requirements with respect to accuracy and workability. A head-mount wireless tracking system was implemented based on inertial sensors that are capable of detecting motion in the Yaw, Pitch and Roll axes. The sensors were connected to the encoding station, which transmits wirelessly the 3-axis movement data to the decoding station at the sampling rate of ~175 Hz. The decoding station relays this information to the computer for real-time display and analysis. Different tracking systems, based on the accelerometer and Inertial Measurement Unit is implemented to track the head movement pattern of the marmoset head. Using these systems, translational and rotational information of head movement are collected, and the data analysis focuses on the rotational head movement in body-constrained marmosets. Three stimulus conditions were tested: 1) Alert, 2) Idle 3) Sound only. The head movement patterns were examined when the house light was turned on and off for each stimulus. Angular velocity, angular displacement and angular acceleration were analyzed in all three axes.

Fast and large head turns were observed in the Yaw axis in response to the alert stimuli and not much in the idle and sound-only stimulus conditions. Contrasting changes in speed and range of head movement were found between light-on and light-off situations. The mean peak angular displacement was 95 degrees (light on) and 55 (light off) and the mean peak angular velocity was 650 degrees/ second (light on) and 400 degrees/second (light off), respectively, in response to the alert stimuli. These results suggest that the marmoset monkeys may engage in different modes of orienting behaviors with respect to the availability of visual cues and thus the necessity of head movement. This study provides a useful tool for future studies in understanding the interplay among visual, auditory and vestibular systems during nature behavior.

Contributors

Agent

Created

Date Created
  • 2015

153939-Thumbnail Image.png

Investigating compensatory mechanisms for sound localization: visual cue integration and the precedence effect

Description

Sound localization can be difficult in a reverberant environment. Fortunately listeners can utilize various perceptual compensatory mechanisms to increase the reliability of sound localization when provided with ambiguous physical evidence.

Sound localization can be difficult in a reverberant environment. Fortunately listeners can utilize various perceptual compensatory mechanisms to increase the reliability of sound localization when provided with ambiguous physical evidence. For example, the directional information of echoes can be perceptually suppressed by the direct sound to achieve a single, fused auditory event in a process called the precedence effect (Litovsky et al., 1999). Visual cues also influence sound localization through a phenomenon known as the ventriloquist effect. It is classically demonstrated by a puppeteer who speaks without visible lip movements while moving the mouth of a puppet synchronously with his/her speech (Gelder and Bertelson, 2003). If the ventriloquist is successful, sound will be “captured” by vision and be perceived to be originating at the location of the puppet. This thesis investigates the influence of vision on the spatial localization of audio-visual stimuli. Participants seated in a sound-attenuated room indicated their perceived locations of either ISI or level-difference stimuli in free field conditions. Two types of stereophonic phantom sound sources, created by modulating the inter-stimulus time interval (ISI) or level difference between two loudspeakers, were used as auditory stimuli. The results showed that the light cues influenced auditory spatial perception to a greater extent for the ISI stimuli than the level difference stimuli. A binaural signal analysis further revealed that the greater visual bias for the ISI phantom sound sources was correlated with the increasingly ambiguous binaural cues of the ISI signals. This finding suggests that when sound localization cues are unreliable, perceptual decisions become increasingly biased towards vision for finding a sound source. These results support the cue saliency theory underlying cross-modal bias and extend this theory to include stereophonic phantom sound sources.

Contributors

Agent

Created

Date Created
  • 2015

152941-Thumbnail Image.png

Head rotation detection in marmoset monkeys

Description

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.

Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.

The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.

Contributors

Agent

Created

Date Created
  • 2014

158812-Thumbnail Image.png

Neuronal Deep Fakes Data Driven Optimization of Reduced Neuronal Model

Description

Neuron models that behave like their biological counterparts are essential for computational neuroscience.Reduced neuron models, which abstract away biological mechanisms in the interest of speed and interpretability, have received much

Neuron models that behave like their biological counterparts are essential for computational neuroscience.Reduced neuron models, which abstract away biological mechanisms in the interest of speed and interpretability, have received much attention due to their utility in large scale simulations of the brain, but little care has been taken to ensure that these models exhibit behaviors that closely resemble real neurons.
In order to improve the verisimilitude of these reduced neuron models, I developed an optimizer that uses genetic algorithms to align model behaviors with those observed in experiments.
I verified that this optimizer was able to recover model parameters given only observed physiological data; however, I also found that reduced models nonetheless had limited ability to reproduce all observed behaviors, and that this varied by cell type and desired behavior.
These challenges can partly be surmounted by carefully designing the set of physiological features that guide the optimization. In summary, we found evidence that reduced neuron model optimization had the potential to produce reduced neuron models for only a limited range of neuron types.

Contributors

Agent

Created

Date Created
  • 2020

153418-Thumbnail Image.png

Dynamic spatial hearing by human and robot listeners

Description

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.

Contributors

Agent

Created

Date Created
  • 2015