Matching Items (118)
Filtering by

Clear all filters

190763-Thumbnail Image.png
Description
Transient Receptor Potential Vanilloid-1 (TRPV1) is an integral membrane polymodal cation channel involved in various essential biological functions, including thermosensing, thermoregulation, and nociception. Discrete TRPV1 activation modes such as ligand, heat, and proton have been challenging to disentangle. However, dissecting the polymodal nature of TRPV1 is essential for therapeutic development.

Transient Receptor Potential Vanilloid-1 (TRPV1) is an integral membrane polymodal cation channel involved in various essential biological functions, including thermosensing, thermoregulation, and nociception. Discrete TRPV1 activation modes such as ligand, heat, and proton have been challenging to disentangle. However, dissecting the polymodal nature of TRPV1 is essential for therapeutic development. The human TRPV1 (hTRPV1) voltage-sensing like domain (VSLD; transmembrane helices S1-S4) contains the canonical vanilloid ligand binding site and significantly contributes to thermosensing. Nuclear magnetic resonance (NMR)-detected studies probe the role of the hTRPV1-VSLD in TRPV1 polymodal function. The hTRPV1-VSLD is identified as an allosteric hub for all three primary TRPV1 activation modes and demonstrates plasticity in chemical ligand modulation. The presented results underscore molecular features in the VSLD that dictate TRPV1 function, highlighting important considerations for future therapeutic design.
ContributorsOwens, Aerial M. (Author) / Van Horn, Wade D. (Thesis advisor) / Levitus, Marcia (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023
190960-Thumbnail Image.png
Description
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the production of neutralizing antibodies against the spike (S) to prevent infection. As the virus evolves, new variants emerge that evade neutralizing antibodies produced by natural infection and vaccination, while memory T cell responses are long-lasting and resilient to most of the changes found in variants of concern (VOC). Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals suggesting that cross-reactive and conserved epitopes may be protective against infection. The current study is focused on the T cell-mediated response, with special attention to conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. The first chapter reviews the importance of epitope prediction in understanding the T cell-mediated responses to a pathogen. The second chapter centers on the validation of SARS-CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and immunoprevalent epitopes that can be incorporated into the next generation of vaccines against severe COVID-19 disease. The third chapter explores pre-existing immunity to SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that are conserved among human common cold coronaviruses (HCoVs). To end, the fourth chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and other human coronaviruses (HCoVs).
ContributorsCarmona, Jacqueline (Author) / Anderson, Karen S (Thesis advisor) / Lake, Douglas (Thesis advisor) / Maley, Carlo (Committee member) / Mangone, Marco (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023
190922-Thumbnail Image.png
Description
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer.

Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
ContributorsBaehr, Stephan (Author) / Lynch, Michael (Thesis advisor) / Geiler-Samerotte, Kerry (Committee member) / Mangone, Marco (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2023
Description
The purpose of this experiment was to use real-time quantitative polymerase chain reactions (RT-qPCR) to quantify and analyze differences in expression of U1 snRNA variants across four different human Leukemia cell lines. We found a number of interesting results in the four cell lines. Two variants in particular (vU1.15 and

The purpose of this experiment was to use real-time quantitative polymerase chain reactions (RT-qPCR) to quantify and analyze differences in expression of U1 snRNA variants across four different human Leukemia cell lines. We found a number of interesting results in the four cell lines. Two variants in particular (vU1.15 and vU1.19), were only expressed in one leukemia cell line each, indicating a potential link between their specific mutations and the type of leukemia associated with the cell lines in which they were expressed. Further research should be conducted to understand these differences and uncover potential clinical applications.
ContributorsLawrence, Ethan (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-12
Description

Redox homeostasis is described as the net physiologic balance between inter-convertible oxidized and reduced equivalents within subcellular compartments that remain in a dynamic equilibrium. This equilibrium is impacted by reactive oxygen species (ROS), which are natural by-products of normal cellular activity. Studies have shown that cancer cells have high ROS

Redox homeostasis is described as the net physiologic balance between inter-convertible oxidized and reduced equivalents within subcellular compartments that remain in a dynamic equilibrium. This equilibrium is impacted by reactive oxygen species (ROS), which are natural by-products of normal cellular activity. Studies have shown that cancer cells have high ROS levels and altered redox homeostasis due to increased basal metabolic activity, mitochondrial dysfunction, peroxisome activity, as well as the enhanced activity of NADPH oxidase, cyclooxygenases, and lipoxygenases. Glioblastoma (GBM) is the most prevalent primary brain tumor in adults with a median survival of 15 months. GBM is characterized by its extreme resistance to therapeutic interventions as well as an elevated metabolic rate that results in the exacerbated production of ROS. Therefore, many agents with either antioxidant or pro-oxidant mechanisms of action have been rigorously employed in preclinical as well as clinical settings for treating GBM by inducing oxidative stress within the tumor. Among those agents are well-known antioxidant vitamin C and small molecular weight SOD mimic BMX-001, both of which are presently in clinical trials on GBM patients. Despite the wealth of investigations, limited data is available on the response of normal brain vs glioblastoma tissue to these therapeutic interventions. Currently, a sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established for the quantification of a panel of oxidative stress biomarkers: glutathione (GSH), cysteine (Cys), glutathione disulfide (GSSG), and cysteine disulfide in human-derived brain tumor and mouse brain samples; this method will be enriched with additional oxidative stress biomarkers homocysteine (Hcy), methionine (Met), and cystathionine (Cyst). Using this enriched method, we propose to evaluate the thiol homeostasis and the redox state of both normal brain and GBM in mice after exposure with redox-active therapeutics. Our results showed that, compared to normal brain (in intact mice), GBM tissue has significantly lower GSH/GSSG and Cys/CySS ratios indicating much higher oxidative stress levels. Contralateral “normal” brain tissue collected from the mice with intracranial GBM were also under significant oxidative stress compared to normal brains collected from the intact mice. Importantly, normal brain tissue in both studies retained the ability to restore redox homeostasis after treatment with a redox-active therapeutic within 24 hours while glioblastoma tissue does not. Ultimately, elucidating the differential redox response of normal vs tumor tissue will allow for the development of more redox-active agents with therapeutic benefit.

ContributorsShaik, Kamal (Author) / LaBaer, Joshua (Thesis director) / Tovmasyan, Artak (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-12
171957-Thumbnail Image.png
Description
Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs

Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs formed through the back-splicing of pre-mRNA. The Homer1 gene family, which encodes proteins associated with cocaine-induced plasticity, also encodes circHomer1. Based on preliminary evidence from shows cocaine-regulated changes in the ratio of circHomer1 and Homer1b mRNA in the nucleus accumbens (NAc), this study examined the relationship between circHomer1 and incentive motivation for cocaine by using different lengths of abstinence to vary the degree of motivation. Male and female rats were trained to self-administer cocaine (0.75 mg/kg/infusion, IV) or received a yoked saline infusion. Rats proceeded on an increasingly more difficult variable ratio schedule of lever pressing until they reached a variable ratio 5 schedule, which requires an average of 5 lever presses, and light and tone cues were delivered with the drug infusions. Rats were then tested for cocaine-seeking behavior in response to cue presentations without drug delivery either 1 or 21 days after their last self-administration session. They were sacrificed immediately after and circHomer1 and Homer1b expression was then measured from homogenate and synaptosomal fractions of NAc shell using RT-qPCR. Lever pressing during the cue reactivity test increased from 1 to 21 days of abstinence as expected. Results showed no group differences in synaptic circHomer1 expression, however, total circHomer1 expression was downregulated in 21d rats compared to controls. Lack of change in synaptic circHomer1 was likely due to trends toward different temporal changes in males versus females. Total Homer1b expression was higher in females, although there was no effect of cocaine abstinence. Further research investigating the time course of circHomer1 and Homer1b expression is warranted based on the inverse relationship between total circHomer1and cocaine-seeking behavior observed in this study.
ContributorsJohnson, Michael Christian (Author) / Neisewander, Janet L (Thesis advisor) / Perrone-Bizzozero, Nora (Thesis advisor) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171968-Thumbnail Image.png
Description
DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long

DNA methylation (DNAm) is an epigenetic mark with a critical role in regulating gene expression. Altered clinical states, including toxin exposure and viral infections, can cause aberrant DNA methylation in cells, which may persist during cell division. Current methods to study genome-wide methylome profiles of the cells require a long processing time and are expensive. Here, a novel technique called Multiplexed Methylated DNA Immunoprecipitation Sequencing (Mx-MeDIP-Seq), which is amenable to automation. Up to 15 different samples can be combined into the same run of Mx-MeDIP-Seq, using only 25 ng of DNA per sample. Mx-MeDIP-Seq was used to study DNAm profiles of peripheral blood mononuclear cells (PBMCs) in two biologically distinct RNA viral infections with different modes of transmission, symptoms, and interaction with the host immune system: human immunodeficiency virus1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Analysis of 90 hospitalized patients with SARS-CoV-2 and 57 healthy controls revealed that SARS-CoV-2 infection led to alterations in 920 methylated regions in PBMCs, resulting in a change in transcription that affects host immune response and cell survival. Analysis of publicly available RNA-Sequencing data in COVID-19 correlated with DNAm in several key pathways. These findings provide a mechanistic view toward further understanding of viral infections. Genome-wide DNAm changes post HIV-1-infection from 37 chronically ill patients compared to 17 controls revealed dysregulation of the actin cytoskeleton, which could contribute to the establishment of latency in HIV-1 infections. Longitudinal DNAm analysis identified several potentially protective and harmful genes that could contribute to disease suppression or progression.
ContributorsRidha, Inam (Author) / LaBaer, Joshua (Thesis advisor) / Murugan, Vel (Thesis advisor) / Plaisier, Christopher (Committee member) / Nikkhah, Mehdi (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2022
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
Description

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates of predation of B. bacteriovorus in vitro and in vivo. In vitro, the behavior of B. bacteriovorus was examined in the presence of prey. In vivo, the behavior of B. bacteriovorus was examined in the presence of prey and a living host, Caenorhabditis elegans (C. elegans). C. elegans were infected with Escherichia coli (E. coli) and treated with B. bacteriovorus. In previous studies that analyzed B. bacteriovorus in vitro, a decrease in concentrations of bacteria has been observed after introduction of B. bacteriovorus. In vivo, B. bacteriovorus were found to not have a net reduction of E. coli but to reproducibly raise the level of fluctuations in E. coli concentrations.

ContributorsPerry, Nicole (Author) / Presse, Steve (Thesis director) / Mangone, Marco (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168356-Thumbnail Image.png
Description
Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly

Antibodies are the immunoglobulins which are secreted by the B cells after a microbial invasion. They are stable and stays in the serum for a long time which makes them an excellent biomarker for disease diagnosis. Inflammatory bowel disease is a type of autoimmune disease where the immune system mistakenly attacks the commensal bacteria and leads to inflammation. We studied antibody response of 100 Crohn’s disease (CD), 100 ulcerative colitis (UC) and 100 healthy controls against 1,173 bacterial and 397 viral proteins. We found some anti-bacterial antibodies higher in CD compared to controls while some antibodies lower in UC compared to controls. We were able to build biomarker panels with AUCs of 0.81, 0.87, and 0.82 distinguishing CD vs. control, UC vs. control, and CD vs. UC, respectively. Subgroup analysis based on the Montreal classification revealed that penetrating CD behavior (B3), colonic CD location (L2), and extensive UC (E3) exhibited highest antibody reactivity among all patients. We also wanted to study the reason for the presence of autoantibodies in the sera of healthy individuals. A meta-analysis of 9 independent biomarker study was performed to find 77 common autoantibodies shared by healthy individuals. There was no gender bias; however, the number of autoantibodies increased with age, plateauing around adolescence. Molecular mimicry likely contributed to the elicitation of a subset of these common autoantibodies as 21 common autoantigens had 7 or more ungapped amino acid matches with viral proteins. Intrinsic properties of protein like hydrophilicity, basicity, aromaticity, and flexibility were enriched for common autoantigens. Subcellular localization and tissue expression analysis indicated the sequestration of some autoantigens from circulating autoantibodies can explain the absence of autoimmunity in these healthy individuals.
ContributorsShome, Mahasish (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021