Matching Items (158)
161251-Thumbnail Image.png
Description
Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation can often be challenging. In this thesis, the Functional Marku

Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation can often be challenging. In this thesis, the Functional Markup Interface (FMI) is used to develop an adapter called DEVS-FMI for the DEVS-Suite simulator. The adapter, implemented using JavaFMI 2.0, allows any Functional Mock-Up Unit (FMU) to be co-simulated with a Discrete Event System Specification (DEVS) model. This approach enables taking advantage of the parallel DEVS formalism to model cyber systems and using Modelica to model physical systems. An FMU serves as a slave simulator while the DEVS-Suite serves as a master simulator. The Four-Variable model is used as a guide to define the requirements for the inputs and outputs of actuator and sensor devices used in cyber and physical systems. The input and output data as non-functional abstractions of the sensor and actuator devices. Select cyber and physical parts of an electric scooter are chosen, modeled, simulated, and evaluated using the integrated OpenModelica and the DEVS-Suite simulators. Closely related research is briefly examined and expanding this work with support for implicit state-changes for continuous models and distributed co-simulation is noted.
ContributorsLin, Xuanli (Author) / Sarjoughian, Hessam S (Thesis advisor) / Pedrielli, Giulia (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2021
161834-Thumbnail Image.png
Description
The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that

The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that helps patients restore their limbs’ functions. Exoskeletons and exosuits are being developed for either human performance augmentation or medical purposes like rehabilitation. Although, the research on exoskeletons started early before exosuits, the research and development on exosuits have recently grown rapidly as exosuits have advantages that exoskeletons lack. The objective of this research is to develop a soft exosuit for knee flexion assistance and validate its ability to reduce the EMG activity of the knee flexor muscles. The exosuit has been developed with a novel soft fabric actuator and novel 3D printed adjustable braces to attach the actuator aligned with the knee. A torque analytical model has been derived and validate experimentally to characterize and predict the torque output of the actuator. In addition to that, the actuator’s deflation and inflation time has been experimentally characterized and a controller has been implemented and the exosuit has been tested on a healthy human subject. It is found that the analytical torque model succeeded to predict the torque output in flexion angle range from 0° to 60° more precisely than analytical models in the literature. Deviations existed beyond 60° might have happened because some factors like fabric extensibility and actuator’s bending behavior. After human testing, results showed that, for the human subject tested, the exosuit gave the best performance when the controller was tuned to inflate at 31.9 % of the gait cycle. At this inflation timing, the biceps femoris, the semitendinosus and the vastus lateralis muscles showed average electromyography (EMG) reduction of - 32.02 %, - 23.05 % and - 2.85 % respectively. Finally, it is concluded that the developed exosuit may assist the knee flexion of more diverse healthy human subjects and it may potentially be used in the future in human performance augmentation and rehabilitation of people with disabilities.
ContributorsHasan, Ibrahim Mohammed Ibrahim (Author) / Zhang, Wenlong (Thesis advisor) / Aukes, Daniel (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2021
Description
Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more

Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more safe and efficient AI agents that can navigate through our cities. However, driving is a very complex task to master even for a human, let alone the challenges in developing robots to do the same. It requires attention and inputs from the surroundings of the car, and it is nearly impossible for us to program all the possible factors affecting this complex task. As a solution, imitation learning was introduced, wherein the agents learn a policy, mapping the observations to the actions through demonstrations given by humans. Through imitation learning, one could easily teach self-driving cars the expected behavior in many scenarios. Despite their autonomous nature, it is undeniable that humans play a vital role in the development and execution of safe and trustworthy self-driving cars and hence form the strongest link in this application of Human-Robot Interaction. Several approaches were taken to incorporate this link between humans and self-driving cars, one of which involves the communication of human's navigational instruction to self-driving cars. The communicative channel provides humans with control over the agent’s decisions as well as the ability to guide them in real-time. In this work, the abilities of imitation learning in creating a self-driving agent that can follow natural language instructions given by humans based on environmental objects’ descriptions were explored. The proposed model architecture is capable of handling latent temporal context in these instructions thus making the agent capable of taking multiple decisions along its course. The work shows promising results that push the boundaries of natural language instructions and their complexities in navigating self-driving cars through towns.
ContributorsMoudhgalya, Nithish B (Author) / Amor, Hani Ben (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
Description
In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over

In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over the evader that has conventionally benefited from the uncertainty of the pursuit. The pursuer can utilize this knowledge to enable a faster capture of the evader, as opposed to a pursuer that only knows the evader's current location. Inspired by the function of dorsal anterior cingulate cortex (dACC) neurons in natural predators, the use of a predictive model that is built using an encoder-decoder Long Short-Term Memory (LSTM) Network and can produce a more accurate estimate of the evader's future location is proposed. This enables an even quicker capture of a target when compared to previously used filtering-based methods. The effectiveness of the approach is evaluated by setting up these agents in an environment based in the Modular Open Robots Simulation Engine (MORSE). Cross-domain adaptability of the method, without the explicit need to retrain the prediction model is demonstrated by evaluating it in another domain.
ContributorsGodbole, Sumedh (Author) / Yang, Yezhou (Thesis advisor) / Srivastava, Siddharth (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161425-Thumbnail Image.png
Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
ContributorsGharat, Shubham Shriniwas (Author) / McDaniel, Troy (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
130273-Thumbnail Image.png
Description
Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts have captured the spatiotemporal patterns of thousands of embryonic expressed genes in the form of in situ images. FlyExpress (www.flyexpress.net),

Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts have captured the spatiotemporal patterns of thousands of embryonic expressed genes in the form of in situ images. FlyExpress (www.flyexpress.net), a knowledgebase based on a massive and unique digital library of standardized images and a simple search engine to find coexpressed genes, was created to facilitate the analytical and visual mining of these patterns. Here, we introduce the next generation of FlyExpress resources to facilitate the integrative analysis of sequence data and spatiotemporal patterns of expression from images. FlyExpress 7 now includes over 100,000 standardized in situ images and implements a more efficient, user-defined search algorithm to identify coexpressed genes via Genomewide Expression Maps (GEMs). Shared motifs found in the upstream 5′ regions of any pair of coexpressed genes can be visualized in an interactive dotplot. Additional webtools and link-outs to assist in the downstream validation of candidate motifs are also provided. Together, FlyExpress 7 represents our largest effort yet to accelerate discovery via the development and dispersal of new webtools that allow researchers to perform data-driven analyses of coexpression (image) and genomic (sequence) data.
ContributorsKumar, Sudhir (Author) / Konikoff, Charlotte (Author) / Sanderford, Maxwell (Author) / Liu, Li (Author) / Newfeld, Stuart (Author) / Ye, Jieping (Author) / Kulathinal, Rob J. (Author) / College of Health Solutions (Contributor) / Department of Biomedical Informatics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-06-30
154380-Thumbnail Image.png
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05