Matching Items (104)
153287-Thumbnail Image.png
Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from

The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
ContributorsBeaudet, Kaitlyn (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
155551-Thumbnail Image.png
Description
When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal

When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal experience and their relationship to the broader tango community. In this dissertation I explore creative approaches to enrich the sense of connection, that is, the experience of oneness with a partner and complete immersion in music and dance for Argentine tango dancers by providing agency over musical activities through the use of interactive technology. Specifically, I create an interactive dance system that allows tango dancers to affect and create music via their movements in the context of social dance. The motivations for this work are multifold: 1) to intensify embodied experience of the interplay between dance and music, individual and partner, couple and community, 2) to create shared experience of the conventions of tango dance, and 3) to innovate Argentine tango social dance practice for the purposes of education and increasing musicality in dancers.
ContributorsBrown, Courtney Douglass (Author) / Paine, Garth (Thesis advisor) / Feisst, Sabine (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2017
154734-Thumbnail Image.png
Description
The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual.

The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. Nonetheless we can still think of the body’s shadow not as the body but its alter ego.

Based on this premise, my thesis creates an experiential system that extracts the data related to the contour of your human shape and gives it a texture and life of its own, so as to emulate your movements and postures, and to be your extension. In technical terms, my thesis extracts abstraction from a pre-indexed database that could be generated from an offline data set or in real time to complement these actions of a user in front of a low-cost optical motion capture device like the Microsoft Kinect. This notion could be the system’s interpretation of the action which creates modularized art through the abstraction’s ‘similarity’ to the live action.

Through my research, I have developed a stable system that tackles various connotations associated with shadows and the need to determine the ideal features that contribute to the relevance of the actions performed. The implication of Factor Oracle [3] pattern interpretation is tested with a feature bin of videos. The system also is flexible towards several methods of Nearest Neighbours searches and a machine learning module to derive the same output. The overall purpose is to establish this in real time and provide a constant feedback to the user. This can be expanded to handle larger dynamic data.

In addition to estimating human actions, my thesis best tries to test various Nearest Neighbour search methods in real time depending upon the data stream. This provides a basis to understand varying parameters that complement human activity recognition and feature matching in real time.
ContributorsSeshasayee, Sudarshan Prashanth (Author) / Sha, Xin Wei (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Tinapple, David A (Committee member) / Arizona State University (Publisher)
Created2016