Matching Items (2,952)
Filtering by

Clear all filters

Description
Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research

Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research project is to explore DNA nanotech-based NK cell engagers (NKCEs) that force an immunological synapse between the NK cell and the cancer cell, leading to cancer death. DNA tetrabody (TB) and DNA tetrahedron (TDN) are fabricated and armed with HER2 affibody for tight adhesion to HER2+ cancer cell lines like SKBR3. Overall, relationship between TB-NK treatment and cancer cell apoptosis is still unclear. TB-NK treatment induces an apoptotic profile similar to PMA/IO stimulation. Pilot cell assay needs to be replicated with additional controls and a shortened treatment window. For DNA TDN fabrication, HER2 affibody polishing with Ni-NTA affinity chromatography achieves high purity with 20% to 100% high-imidazole elution gradient. ssDNA-HER2 affibody conjugation is optimal when ssDNA is treated with 40-fold excess sulfo-SMCC for 4 hours. In conclusion, the manufacturing of DNA-based NKCEs is rapid and streamlined, which gives these NKCEs the potential to become a ready to use immunotherapy.
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
Description
Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development. To better understand the effects of endogenous choline through the

Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development. To better understand the effects of endogenous choline through the lifespan in the context of Alzheimer pathology, Male and Female 3xTg-AD and NonTg mice, were aged to 16.81 ± 0.13 months. Body weight, food consumption data, and blood plasma samples were collected across the lifespan. A behavioral battery, that consisted of Rotarod, Elevated Plus Maze, and Intellicage, was performed to assess differences across a range of tasks. Hippocampal and cortical tissue were collected to assess pathology. Overall, 3xTg-AD mice had lower choline levels than NonTg at multiple timepoints and Males had higher choline than Females. Furthermore, 3xTg-AD Females had higher levels of both Aβ and Tau pathology than their Male counterparts. In the Intellicage, Females made fewer Percent of Correct Responses during Place Preference. Together these findings show that choline levels through the lifespan, impact the severity of pathology between Males and Female 3xTg-AD mice and behavioral differences between the 3xTg-AD and NonTg mouse models.
ContributorsMistry, Faizan (Author) / Velazquez, Ramon (Thesis director) / Judd, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05
192733-Thumbnail Image.png
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05